跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱其奎
研究生(外文):Chyi-kwei Yau
論文名稱:微帶線至基板合成矩型波導之轉接與天線應用
論文名稱(外文):Microstrip Line to Substrate Integrated Waveguide Transition and Antenna Applications
指導教授:吳瑞北
指導教授(外文):Ruey-Beei Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:轉接基版合成波導微帶線
外文關鍵詞:transitionSIWmicrostrip line
相關次數:
  • 被引用被引用:1
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出兩種微帶線至基版合成波導的垂直轉接以及利用轉接結構作為一開槽陣列天線的饋入。這些結構則是製作在低溫共燒陶瓷上。論文中也同時提出轉接結構的等效電路,希望能方便設計。微帶線可以製作在基版的上層,下層則利用金屬連通柱列可以等效成波導中的垂直金屬壁,來形成基版合成波導。
第一種轉接結構是利用一短路的連通柱連接微帶線的末端以及基版合成波導的底部,利用在這個連通柱上產生的電流耦合至基版合成波導達成轉接。
另一種轉接結構則是利用在基版合成波導的上端開槽,並且利用末端開路的微帶線饋入,利用開槽等效出的磁流耦合至基版合成波導來形成轉接。開槽陣列天線的設計就利用在基版合成波導上方開槽形成輻射,調整開槽的位置以及長度可以改變輻射的強度以及頻率。
我們將轉接結構設計在Ka頻段,兩個轉接結構在反射損耗小於15dB情況下,可以達到大約40%的比例頻寬,量測的結果也和模擬的結果符合。
This thesis proposes two kinds of vertical transitions between microstrip line and substrate integrated waveguide (SIW), and a slot array antenna feeding by our transition structure. All these structures are fabricated on low-temperature co-fired ceramic (LTCC) substrate. This thesis also presents the equivalent circuits of both transition structures. The microstrip line is on the upper layer, and the SIW is on the bottom layer with the vertical metal walls realized by closely spaced vias.
The first transition design is realized by a shorted via between the end of the microstrip line and the bottom layer of SIW. A current is induced on the via and energy is coupled to SIW.
Another transition structure is realized by opening a slot on the top wall of SIW and feeding by a 1/4λg microstrip line open stub. With the magnetic current induced on the slot, the transition is achieved. The design of slot array antenna is also achieved by opening slots on SIW, and the power is radiated from the slots. The radiated power and center frequency are adjusted by the slot position and slot length.
All our structures are designed at Ka-band. Both the transition structures exhibit about 40% fractional bandwidth with -15dB return loss and the measurement results agree with our simulation.
目錄

第一章 簡介.............................................1
1.1 研究動機.............................................1
1.2 相關研究現況.........................................2
1.3 章節內容概述.........................................4

第二章 介質矩型波導與輸入阻抗推導......................11
2.1 介質矩型波導........................................11
2.1.1 介質矩型波導的結構................................12
2.1.2 介質矩型波導的傳播模態............................13
2.1.3 傳播模態的正交特性................................15
2.2 電流激發矩型波導的輸入阻抗..........................18
2.2.1 電流激發矩型波導的結構............................18
2.2.2 互易定理(reciprocity theory)的使用................18
2.2.3 輸入阻抗的計算....................................20
2.3 開槽耦合矩型波導的輸入阻抗..........................21
2.3.1 開槽耦合矩型波導的結構............................21
2.3.2 等效原理(equivalence principle)的使用.............22
2.3.3 輸入阻抗的計算....................................22
2.4 結論................................................23

第三章 介質矩型波導連通柱短路到地轉接器的研製..........24
3.1 設計結構............................................24
3.1.1 介質矩型波導的設計................................24
3.1.2 微帶線至介質矩型波導的設計結構....................25
3.2 模擬與量測結果......................................28
3.2.1 設計規格..........................................28
3.2.2 結構與尺寸........................................28
3.2.3 單一轉接模擬結果..................................29
3.2.4 背對背模擬與量測結果..............................30
3.3 輸入阻抗的推導與驗證................................32
3.3.1 輸入阻抗的推導....................................32
3.3.2 模擬的驗證........................................35
3.3.3 等效電路的推導....................................38
3.4 結論................................................46

第四章 介質矩型波導開槽耦合轉接器的研製................42
4.1 設計結構............................................47
4.1.1介質矩型波導的設計.................................47
4.1.2微帶線至介質矩型波導的設計結構.....................47
4.2 模擬與量測結果......................................47
4.2.1 設計規格..........................................52
4.2.2 結構與尺寸........................................52
4.2.3 單一轉接模擬結果..................................52
4.2.4 背對背模擬與量測結果..............................54
4.3 輸入阻抗的推導與驗證................................56
4.3.1 輸入阻抗的推導....................................56
4.3.2 模擬的驗證........................................58
4.3.3 等效電路的推導....................................63
4.4 結論................................................70

第五章 介質矩型波導開槽陣列天線的研製..................71
5.1 陣列天線的理論......................................71
5.1.1 陣列場型的分析....................................71
5.1.2 線性陣列..........................................75
5.2矩型波導開槽陣列天線的設計...........................78
5.2.1 開槽陣列天線的設計結構............................78
5.2.2 開槽陣列天線的等效電路............................80
5.3 模擬與量測結果......................................82
5.3.1 設計規格..........................................82
5.3.2 結構與尺寸........................................82
5.3.3 模擬與量測結果....................................84
5.4 結論................................................88

第六章 結論.............................................89

參考文獻................................................90
[1] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave Wireless Comp. Lett., vol. 11, no.2, pp. 68–70, Feb. 2001.
[2] D. Deslandes and K. Wu, “Integrated transition of coplanar to rectangular waveguide,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp 619-622, May 2001.
[3] Y. C. Shih, T. N. Ton, and L. Q. Bui, “Waveguide-to-microstrip transitions for millimeter-wave applications,” IEEE MTT-S, Int. Microwave Symp. Dig., vol.1, pp. 473-475, May 1998.
[4] Y. Huang, K.L. Wu, and M. Ehlert, “An integrated LTCC laminated waveguide to microstrip line T-junction,” IEEE Microwave Wireless Comp. Lett., vol.13,pp. 338–339, Aug. 2003.
[5] R. Valois, D. Baillargeat, S. Verdeyme, M. Lahti, T. Jaakola, ”High performances of shielded LTCC vertical transitions from DC up to 50 GHz” IEEE Trans. Microwave Theory Tech., vol. 53, no. 6, Jun. 2005
[6] W. Grabherr, B. Huder, and W. Menzel, “Microstrip to waveguide transition compatible with MM-wave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1842-1843, Sept. 1994.
[7] T. H. Yang, C. F. Chen, T. Y. Huang, C. L. Wang, and R. B. Wu, “A 60GHz LTCC transition between microstrip line and substrate integrated waveguide,” Proc. APMC, Vol. 1, pp. 4-7, Dec. 2005.
[8] H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a laminated waveguide,” IEEE Trans. Microwave Theory Tech., vol. 46, no 12, pp. 2438-2443, Dec. 1998.
[9] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave Wireless Comp. Lett., vol. 11, no.2, pp. 68–70, Feb. 2001.
[10] D. Deslandes and K. Wu, “Integrated transition of coplanar to rectangular waveguide,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp 619-622, May 2001.
[11] R. E. Collins, field theory of guided waves, New York, IEEE PRESS, 1991, section 5.4.
[12] R. S. Elliott, Antenna Theory and Design, 2nd ed, John Wiley & Sons, INC. 1998, section 4.2-4.3.
[13]R. S. Elliot and L. A. Kurtz, “The design of small slot arrays,” IEEE Trans. Antennas Propagat., vol. AP-26, pp.214-219, Mar. 1978.
[14] R. S. Elliot and W. R. O’Loughlin, “The design of slot arrays including internal mutual coupling,” IEEE Trans. Antennas Propagat., vol. AP-34, pp.1149-1154, Sept. 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top