跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬逸群
研究生(外文):Ma, Yi-Chun
論文名稱:添加循環式流化床飛灰及水淬高爐石粉、粉煤灰對水泥砂漿特性影響之研究
論文名稱(外文):Effects of Circulated Fluidized-Bed Fly Ash, Ground Granulated Blast-Furnace Slag and Coal Fly Ash on properties of Mortar
指導教授:張建智
指導教授(外文):Chang, Jiang-Jhy
口試委員:葉為忠張建智紀茂傑
口試委員(外文):Yeih, Wei -ChungChang, Jiang-JhyChi, Mao-Chieh
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:80
中文關鍵詞:CFBC飛灰水淬高爐石粉粉煤飛灰耐久性微觀特性
外文關鍵詞:Circulated Fluidized Bed Combustion Technology (CFBC) fly ashGround Granulated Blast-Furnace Slag (GGBFS)Coal Fly Ash (CFA)durabilitymicro-scale properties
相關次數:
  • 被引用被引用:5
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:0
CFBC飛灰、水淬高爐石粉及粉煤飛灰均為工業發展所產生的副產品,添加作為礦物摻料或取代水泥皆可減少原物料的使用,有效利用工業廢棄物並能降低水泥的用量,達到國家永續利用之目標。緣此,本研究擬以既有的研究成果為基礎並參考國內外相關之研究文獻,探討將CFBC飛灰、水淬高爐石粉及粉煤飛灰,依不同比例取代水泥製成砂漿試體,評估添加礦物摻料對砂漿新拌性質、物理性質、力學性質、耐久性與微觀特性之影響。
試驗結果顯示適量添加CFBC飛灰有助於改善水泥質材料的流動性,其中以取代水泥10%效果最佳;添加過少的水泥及水淬高爐石粉會造成凝結時間變長,水淬高爐石粉添加量為60%時可有效減少凝結時間;適量添加粉煤飛灰與爐石粉亦可抑制因CFBC飛灰可能帶來的膨脹問題,其中粉煤飛灰以取代20%效果最好,爐石粉以取代40%較果最佳;當CFBC飛灰添加量為20%以下及粉煤飛灰取代量為20%以下時,抗壓強度較佳,水淬高爐石粉則不限制,可有效的取代水泥;增加水泥取代量可以增加抗硫酸鹽,當水泥取代量低於40%時,水淬高爐石取代量要高,否則容易造成損壞;單獨以CFBC飛灰取代水泥10%時,可發現其存在許多細長針管狀或細長針管交織狀的鈣釩石水化物,這也是其會造成膨脹的原因。當以CFBC飛灰及粉煤飛灰混合各取代水泥10%時,可發現其含有鈣釩石與未完全水化的飛灰顆粒。

Circulated Fluidized Bed Combustion Technology (CFBC) fly ash, Ground Granulated Blast-Furnace Slag (GGBFS) and Coal Fly Ash (CFA) all belong to the industrial by products. Using them as the mineral admixtures in concrete can effectively reduce the amount of cement and sustainable construction can be achieved. Based on this, the mixture proportion of CFBC fly ah, GGBFS and CFA in mortar mixtures are examined to evaluate their influences on the properties of fresh mortar, and physical properties, mechanical properties, durability and micro-scale properties of harden mortar.
Experimental results showed that adequate amount of CFBC fly ash increased the flowability of cement paste especially for the group with the replacement percentage of cement being 10%. While the amount of cement and GGBFS was insufficient, the setting time became longer. When the replacement percentage of GGBFS was 60%, the setting time could be effectively reduced. Adequate amount of CFA and GGBFS could inhibit the expansion problem from CFBC fly ash. For CFA, 20% replacement percentage had the best performance while for CFBC fly ash 40% replacement percentage had the best performance. When the replacement percentage of CFBC fly ash was lower than 20% and the replacement percentage of CFA was lower than 20%, the compressive strength became higher. For GGBFS, it can effectively replace cement without reducing the compressive strength. When the replacement percentage of blended mineral admixtures (using CFBC fly ah, GGBFS and CFA at the same time) was higher, the capability to resist sulfate increased. While the replacement percentage of blended mineral admixtures was lower than 40%, the amount of GGBFS should be high in order to prevent possible damage. When the replacement percentage of CFBC fly ash was 10%, needle shape ettringite was observed which explained the reason of expansion. When the replacement percentages of CFBC fly ash and CFA were 10%, nonreactive fly ash powder and ettringite were found.

中文摘要 I
Abstract II
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-2 研究方法與流程 3
第二章 文獻回顧 5
2-1 前言 5
2-3 水淬高爐石粉生成與成分 8
2-4 粉煤飛灰生成與成分 9
2-5 鹼激發 9
2-6 國內外有關本計畫之研究情況 11
第三章 試驗計畫 15
3-1 試驗材料 15
3-2 試驗變數與配比 17
3-3 試驗方法 21
3-4 試驗設備及儀器 24
第四章 結果與分析 29
4-1 流度試驗結果 29
4-2 凝結時間試驗結果 31
4-3 吸水率試驗結果 33
4-4 吸水速率試驗結果 35
4-5 長度變化試驗結果 38
4-6 抗壓強度試驗結果 42
4-7 抗拉強度試驗結果 46
4-8 抗彎強度試驗結果 50
4-9 掃描式電子顯微鏡試驗結果 53
4-10 X光繞射分析試驗結果 64
4-11 抗硫酸鹽健性試驗結果 69
第五章 結論與建議 73
5-1 結論 73
5-2 建議 74
參考文獻 75

[1] Mindess, S., J.F. Young, and D. Darwin, Concrete. 2003: Second Edition, Pearson Education, Inc.
[2] 黃偉慶, 副產石灰摻配爐石粉水泥混凝土研究,台塑石化股份有限公司煉油事業部委託計畫研究期中報告, 2008.
[3] 黃暉淇, 循環式流化床燃燒飛灰應用於水泥質複合材料之機理與特性研究, in 材料工程研究所. 2008, 國立台灣海洋大學2008.
[4] J.R. Justnes, J. Bensted, and P. Barnes, eds. Condensed Silica Fume as Cement Extender, Structure and Performance of Cements. 2nd ed. 2002, Spon Press: London.
[5] 台塑石化公司, 協助推廣台塑石化石油焦循環硫化床灰(Circulated Fluidzed Bed Combustion Ash,CFBC Ash)(簡稱「混合石膏及副產石灰」)在利用策略及擬定相關施工綱要規範或標準可行性座談會,2007.
[6] 台塑石化公司, 副產品「混合石膏及副產飛灰」再利用技術及應用推廣規範評估報告,2005.
[7] 王仁邦, 滾壓混凝土使用CFBC飛灰工程性質之研究, in 河海工程學系. 2010, 國立臺灣海洋大學: 台灣基隆2010.
[8] 覺輝 and 王洪升, 循環式流體化床脫硫灰渣的特性及應用初探,國際電力, 2004.
[9] G. Sheng, Q. Li, J. Zhai, and F. Li, Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,Cement and Concrete Research, 2007.37: p. 871-876.
[10] ACI Committee 232, Use of Raw or Processed Nature Pozzolans in Concrete (ACI 232.1R-00), America Concrete Institute, Farmington Hills, MI. 2000.
[11] ACI Committee 232, Use of Fly Ash in Concrete (ACI 232-2R-96), ACI Manual of Concrete Practice, Part 1, America Concrete Institute, Farmington Hills, MI. 2001.
[12] Y. Shen, J. Qian, and Z. Zhang, Investigations of anhydrite in CFBC fly ash as cement retarders,Construction and Building Materials, 2013.40: p. 672-678.
[13] Y. Song, J. Qian, and Z. Wang, The self-cementing mechanism of CFBC coal ashes at early ages,Wuhan University Technology - Material Science, 2008.24(3): p. 338-341.
[14] F.Q. Zhao, W. Ni, H.J. Wang, and H.J. Liu, Activated fly ash/slag blended cement,Resources, Conservation and Recycling, 2007.52: p. 303-313.
[15] 郭淑德, 台灣地區煤灰利用之研發及其應調查究,電工程月刊, 1998. 432: p. 85 -127.
[16] H.P. Kuo, H.Y. Tseng, A.N. Huang, and R.C. Hsu, A study of the ash production behavior of spent limestone powders in CFBC,Advanced Powder Technology, 2013.14(2): p. 69-77.
[17] E.J. Anthony and D.L. Granatstein, Sulfation phenomena in fluidized bed combustion systems, Progress in Energy and Combustion Science, 2001.27: p. 215-236.
[18] K. Laursen, W. Duo, J.R. Grace, and J. Lim, Sulfation and reactivation characteristics of nine limestones,Fuel, 2000.79: p. 153-163.
[19] E.J. Anthony, L. Jia, and Y. Wu, CFBC ash hydration studies,Fuel (2005), 2005.84: p. 1393-1397.
[20] Y. Xia, Y. Yan, and Z. Hu, Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production,Construction and Building Materials, 2013. 47: p. 1461-1467.
[21] X.G. Li, Q.B. Chen, and H.U. Zhong, Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes,Construction and Building Masterials, 2012.36: p. 182-187.
[22] G. Sheng, Q. Li, and J. Zhai, Investigation on the hydration of CFBC fly ash,Fuel 2012.98: p. 61-66.
[23] T. Sievert, A. Wolter, and N.B. Singh, Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill,Cement and Concrete Research 2005.35: p. 623-630.
[24] C. Shi, P.V. Krivenko, and D. Roy, Alkali-Activated Cement and Concrete. 2006: Taylor and Francis.
[25] ASTM C618-12a Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. 20032003.
[26] 陳韋豫, 鹼活化液模數比及劑量對飛灰砂漿性質影響之研究, in 河海工程學系. 2012, 國立臺灣海洋大學2012.
[27] A. Ghosh and P.L. Pratt, Studies of the hydration reaction and microstructure of cement - fly ash paste,MRS Sympoisium, 1981.
[28] 陳曉杰, 添加矽灰與飛灰對水泥質複合材料孔隙結構影響之研究, in 河海工程學系. 2008, 國立臺灣海洋大學2008.
[29] M. Chi and R. Huang, Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete,Cement & Concrete Composites, 2014.45: p. 148-156.
[30] 吳仁忠, 循環式流化床燃燒灰與粉煤底灰應用於回填料特性之研究, in 材料工程研究所. 2008, 國立台灣海洋大學2008.
[31] M. Criado, A.F. Jiménez, I. Sobrados, A. Palomo, and J. Sanz, Effect of relative humidity on the reaction products of alkali activated fly ash,Journal of the European Ceramic Society 2012.32: p. 2799-2807.
[32] S. Hu, X. Guan, and Q. Ding, Research on optimizing components of microfine high-performance composite cementitious materials,Cement and Concrete Research, 2002.32: p. 1871-1875.
[33] D. Li, Z. Xu, Z. Luo, Z. Pan, and C. Lin, The activation and hydration of glassy cementitious materials,Cement and Concrete Research 2002.32: p. 1145-1152.
[34] M. Chi, Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete,Construction and Building Materials, 2012.35: p. 240-245.
[35] M. Chi and R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars,Construction and Building Materials, 2013.40: p. 291-298.
[36] 王昱智, 副產石灰為混凝土膠結材料之配比與特性研究, in 土木工程研究所. 2008, 國立中央 大學2008.
[37] 李釗, 簡坤葦, and 楊舒予. CFB 副產石灰激發水淬爐石粉機理之初步研究. in 台灣混凝土學會2013 年混凝土工程研討會. 2013. 台灣台北市.
[38] 汪翊鐙, 副產石灰摻配爐石粉製作混凝土成效研究, in 土木工程學系. 2009, 國立中央大學: 台灣桃園2009.
[39] 王怡翔, 添加循環式流體化床飛灰及水淬高爐石粉對於混凝土性質影響之研究, in 河海工程學系. 2013, 國立臺灣海洋大學: 台灣基隆2013.
[40] 林耘丞, 添加循環式流體化床飛灰及粉煤飛灰對於混凝土性質影響之研究, in 河海工程學系. 2013, 國立臺灣海洋大學: 台灣基隆2013.
[41] C. Shon, D. Saylak, and D.G. Zollinger, Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks,Construction and Building Masterials, 2009.23: p. 2062-2071.
[42] C. Prinya and R. Ubolluk, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer,Waste Management, 2010.30: p. 667-672.
[43] T. Takada, I. Hashimoto, and K. Tsutrisumi, Utilization of coal ash from fluidized bed combustion boilers as road base materials,Resource Conservation and Recycling, 1995.14(2): p. 69-77.
[44] 楊舒予, 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討, in 土木工程研究所. 2012, 國立中央 大學2012.
[45] Y.P. Chugh, A. Patwardhan, and S. Kumar, Demonstration of CFB ash as a cement substitute in concrete pier foundations for a Photo-Voltaic power system at SIUC, in World of Coal Ash (WOCA). 2007: Covington, Kentucky, U.S.A.2007.
[46] C.S. Poon, S.C. Kou, and Z.S. Lin, Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4),Cement and Concrete Research 2001. 31: p. 873-881.
[47] J. Iribarne, A. Iribarne, J. Blondin, and E.J. Anthony, Hydration of combustion ashes Ð a chemical and physical study,Fuel 2001.80: p. 773 - 784.
[48] K. Boonserm, V. Sata, K. Pimraksa, and P. Chindaprasirt, Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive,Cement and Concrete Composites, 2012.34: p. 819-824.
[49] P. Chindaprasirt, U. Rattanasak, and C. Jaturapitakkul, Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials,Cement and Concrete Composites, 2011.33: p. 55-60.
[50] H. Xu, Q. Li, L. Shen, M. Zhang, and J. Zhai, Low-reactive circulating fluidized bed combustion (CFBC) fly ashs as source material for geopolymer synthesis,Waste Management, 2010.30: p. 57-62.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top