跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘鈺婷
研究生(外文):Pan Yu Ting
論文名稱:東港溪翠鳥(Alcedo atthis) 的繁殖與築巢偏好
論文名稱(外文):Breeding and nest-site preference of common kingfishers (Alcedo atthis) in Donggang River
指導教授:孫元勳 博士
指導教授(外文):Dr. Sun, Yuan-Shun
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:野生動物保育研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:38
中文關鍵詞:翠鳥繁殖人造坡面
外文關鍵詞:kingfisherbreedingartificial slope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1397
  • 評分評分:
  • 下載下載:108
  • 收藏至我的研究室書目清單書目收藏:0
翠鳥(Alcedo atthis)會運用河岸垂直且沒有植被覆蓋的土堤築巢繁殖,但因多數河岸受到工程的影響導致翠鳥可築巢的空間減少,又因台灣對翠鳥的研究不多。因此本研究沿著東港溪設置不同寬度的人造坡面、收集巢位的土壤分析及觀察翠鳥的繁殖。2012年設置10組人造坡面,翠鳥使用2組;2013年設置16組坡面,使用8組。在2013年設置1 m、2 m、3 m不同寬度坡面中,分別有4、3、7個坡面被翠鳥使用,這和前人的觀察中,提到坡面的面積越大越容易有翠鳥築巢。總共收集40個人造土坡的土壤,進行土壤粒徑分析,比較有翠鳥挖掘過的人造坡面(n=10)和沒被翠鳥挖掘的人造坡面(n=30)其土壤粒徑,發現有翠鳥使用的坡面中以1-0.5 mm粒徑的平均重量百分比低於沒被翠鳥使用的坡面(P=0.019),0.25-0.104 mm的粒徑平均重量百分比在翠鳥有用的坡面高於沒被使用的坡面(P=0.022),其它土壤粒徑則未達顯著,翠鳥使用的土壤性質以砂質黏壤土和砂質壤土為主,這可能和土壤的排水性及凝聚性具有關係。翠鳥每窩產4-7顆卵,平均窩卵數為5.1 ± 1.5顆(n=16),孵出幼鳥3-7隻,平均幼鳥數為3.8 ± 2.9隻(n=11),兩年的繁殖成功率為62.4%。翠鳥孵蛋天數約26天(n=15),育雛天數約20天(n=12),幼鳥離巢後,會待在巢洞附近約兩週時間。在未來用於河岸或濕地的經營管理,可為翠鳥或棕沙燕這類需要使用土壤築巢繁殖的鳥類提供繁殖的棲地。
The Kingfisher (Alcedo atthis) uses vertical and bare banks to reproduce. However, many rivers are devoid of these natural banks due to flood control work, leading to a reduction in the number of available breeding sites. And there is a shortage of kingfisher's research in Taiwan. Hence, this study set the width of the artificial slope along the Donggang River, soil samples are collected to analysis from the artificial slope, and breed of observation. In 2012, 10 artificial slopes were set, 2 of them were used. In 2013, 8 out of 16 artificial slopes were used. In 2013, the highest usage frequency among the 1m, 2m and 3m slopes are the 3 m slope. The usage count are 3m 7 times , 1m 4 times , and 2m 3 times. That confirms the previous observation of the larger the slope area, the higher the reproductive opportunities. The soil samples were collected from 40 artificial slopes. Samples were sieved to analyze the composition of particle size and compare the differences between the slopes with kingfisher nesting (n=10) and the slopes without nesting (n=30). We discovered that the slopes with nesting, the particle size of 1-0.5 mm weight percent lower than the slopes without kingfisher nesting (P=0.019). The weight percentage of particle size 0.25-0.104 mm in the nesting slopes are higher than the slopes without kingfisher nesting (P=0.022). Other particle size differences was not significant. The kingfisher used soils with sandy clay loam and sandy loam. The selection of soil texture may be affected by it drainage and cohesion. Kingfisher produced 4-7 eggs of each nest, with an average clutch size at 5.1 ± 1.5 eggs (n=16). The recorded hatchling are 3-7 chicks, the average number of hatching is 3.8 ± 2.9 (n=11). The reproductive success rate is 62.4%. The kingfishers incubation period is 26 days (n=15), brooding takes about 20 days (n=12), after the fledgling leaves the nest, the fledgling will live close to the nest for about two weeks. In the future, this study can provide management of the riparian or wetland and preserve the bank to breed for the kingfisher or Plain Martian (Riparia paludicola) in Taiwan.
摘要 I
ABSTRACT II
謝誌 IV
圖表目錄 VII
壹、前言 1
貳、研究方法 5
一、 研究地區 5
二、翠鳥繁殖觀察 7
三、天然坡面的搜尋 9
四、人造坡面的設置 9
五、人造坡面土壤質地分析 9
六、繁殖巢位和巢洞之結構測量 11
七、資料分析 11
參、結果 13
一、翠鳥繁殖觀察 13
(一) 繁殖成功率的估算 13
(二) 繁殖時間 16
二、天然坡面搜尋 19
三、人造坡面分佈與使用 20
四、人造坡面的土壤粒徑組成 22
肆、討論 25
一、翠鳥繁殖觀察 25
(一) 繁殖成功率的估算 25
(二) 繁殖時間 25
二、天然坡面搜尋 26
三、人造坡面的分布與使用 26
四、人造坡面的土壤粒徑組成 29
伍、結論 31
參考文獻 32
附錄1. 土壤粒徑分等表 37

王嘉雄、吳森雄、黃光瀛、楊秀英、蔡仲晃、蔡牧起、蕭慶亮 ,1991。台灣野鳥圖鑑。台灣野鳥資訊社。

王怡平,2005。金門栗喉蜂虎營巢棲地復育效應與棲地選擇模式。國立台灣大學森林環境暨資源學系碩士論文。

朱達仁,2004。臺北縣雙溪鄉后番仔坑溪應用生態工法整治影響及生態監測評估之研究。第十四屆水利工程研討會論文集。P91-P98。

池文傑,2006。95 年斗六丘陵(包括湖山水庫)八色鳥族群數量調查。經濟部水利署中區水資源局。

李采燕,2008。棕沙燕在八掌溪的棲地選擇與群集繁殖。國立嘉義大學生物資源學系碩士論文。

林群皓,2004。古今類自然河川工法之探討與水理資訊充足度指標研擬。國立成功大學水利及海洋工程學系碩士論文。

林德貴、賴原崇、劉文宗,2002。河溪整治自然生態工法之設計與分析。自然生態工法實務研討會。

林震岩,2006。多變量分析SPSS的操作與應用。智勝文化事業有限公司。288頁。

林文隆、蔡顯修、吳雪如,2007。水圳水泥化對其間生物數量變動之影響。中華水土保持學報38:31-42。

洪孝宇、陳惠玲、郭智筌、曾建偉、孫元勳,2011。七家灣溪河烏(Cinclus pallasii)的繁殖生物學。國家公園學報21:30-36。

陳瑞仁、黃益助,2012。101年屏東縣河川水質監測計畫期末報告。屏東縣政府環境保護局。1-281頁。

孫元勳、吳禎祺、李方儒,2006。生態工程應用於東港溪下游河道之影響評估-子計畫四:河川截彎取直對東港溪水鳥群聚之影響(Ι)。經濟部水利署第七河川局。

張梁治、蔡志堅,2005。SPSS for 生物統計。啟英文化。4-62頁。

陳瑞仁、黃益助,2012。101年屏東縣河川水質監測計畫期末報告。屏東縣政府環境保護局。1-281頁。

經濟部水利署,2012。中華民國一O一年臺灣水文年報總冊。經濟部水利署。

經濟部水利署,2012。中華民國一O一年臺灣水文年報第一部分-雨量。經濟部水利署。

經濟部水利署水利規劃試驗所,2006。河川治理及環境營造規劃參考手冊。經濟部水利署。

劉浩吾,2002。土壤力學。新文京開發出版有限公司。76-77頁。

劉淑惠,2006。日本生態工法在台灣河川的應用意義。國立師範大學地理學系。環境與世界14:29-42。

劉小如、丁宗蘇、方偉宏、林文宏、蔡牧起、顏重威,2012。台灣鳥類誌第二版。行政院農業委員會林務局。

Allen, H. H., and J. R. Leech. 1997. Bioengineering for streambank erosion control. Report 1-Guidelines. DTIC Document.

Badyaev, A. V., T. E. Martin, and W. J. Etges. 1996. Habitat sampling and habitat selection by female wild turkeys: ecological correlates and reproductive consequences. The Auk 113:636-646.

Brabec, E. 2002. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. Journal of planning literature 16:499-514.

Čech, P. 2006. Reprodukční biologie ledňáčka říčního (Alcedo atthis) a možnosti jeho ochrany v současných podmínkách České republiky. Sylvia 42: 49- 65.

Cockle, K., K. Martin, and K. Wiebe. 2011. Selection of nest trees by cavity‐nesting birds in the Neotropical Atlantic Forest. Biotropica 43:228-236.

Coulombe, G. L., D. C. Kesler, and A. Gouni. 2011. Agricultural coconut forest as habitat for the critically endangered Tuamotu Kingfisher (Todiramphus Gambieri Gertrudae). The Auk 128:283-292.

Gregory, R., D. Noble, R. Field, J. Marchant, M. Raven, and D. Gibbons. 2003. Using birds as indicators of biodiversity. Ornis Hungarica 12:11-24.

Grim, O. S. T. 2007. Nest site selection in the Kingfisher (Alcedo atthis). Sylvia 43:109-122.

Heneberg, P. 2003. Soil particle composition affects the physical characteristics of Sand Martin Riparia riparia holes. Ibis 145:392-399.

Heneberg, P. 2004. Soil particle composition of Eurasian Kingfisher’s (Alcedo atthis) nest sites. Acta Zoologica Academiae Scientiarum Hungaricae 509(3):185-193.

Jones, J. 2001. Habitat selection studies in Avian Ecology: A critical review. The Auk 118(2):557-562.

Martin, K., K. E. Aitken, and K. L. Wiebe. 2004. Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. The Condor 106:5-19.

Kafutshi, R. K., and J. A. Komanda. 2011. The impact of soil texture on the selection of nesting sites by the Malachite Kingfisher (Alcedinidae: Alcedo cristata Pallas 1764). Ostrich 82:243-246.

Mayfield, H. F. 1975. Suggestions for calculation nest success. The Wilson Bulletin 87:456-466.

Morgan, R., and D. Glue. 1977. Breeding, mortality and movements of kingfishers. Bird Study 24:15-24.

Martin, T., C. Paine, C. Conway, W. Hochachka, P. Allen, and W. Jenkins. 1997. BBIRD field protocol. Montana Cooperative Wildlife Research Unit, University of Montana, Missoula.

Mitsch, W. J. 1998. Ecological engineering—the 7-year itch. Ecological engineering 10:119-130.

Oppliger, A., H. Richner, and P. Christe. 1994. Effect of an ectoparasite on lay date, nest-site choice, desertion, and hatching success in the great tit (Pants major). Behavioral Ecology 5:130-134.

Orchan, Y., F. Chiron, A. Shwartz, and S. Kark. 2013. The complex interaction network among multiple invasive bird species in a cavity-nesting community. Biological invasions 15:429-445.

Peterson, B., and G. Gauthier. 1985. Nest site use by cavity-nesting birds of the Cariboo Parkland, British Columbia. The Wilson Bulletin 97:319-331.

Smith, T. M., and S. R. Leo. 2000. Elements of ecology, Seventh Edition. Benjamin Cumming .

Sullivan, S. M. P., M. C. Watzin, and W. C. Hession. 2006. Differences in the reproductive ecology of Belted Kingfishers (Ceryle alcyon) across streams with varying geomorphology and habitat quality. Waterbirds 29:258-270.

Silver, M., and C. R. Griffin. 2009. Nesting habitat characteristics of bank Swallows and Belted Kingfishers on the Connecticut River. Northeastern Naturalist 16:519-534.

Smalley, I., K. O’Hara-Dhand, S. McLaren, Z. Svircev, and H. Nugent. 2012. Loess and Bee-Eaters I: Ground properties affecting the nesting of European bee-eaters (Merops apiaster L. 1758) in loess deposits. Quaternary International 296:220-226.

Sullivan, S. M. P., and K. T. Vierling. 2012. Exploring the influences of multiscale environmental factors on the American dipper Cinclus mexicanus. Ecography 35:624-636.

Tomás, G., S. Merino, J. Moreno, and J. Morales. 2007. Consequences of nest reuse for parasite burden and female health and condition in blue tits, Cyanistes caeruleus. Animal Behaviour 73:805-814.

Wang, Y. P., L. Siefferman, Y. J. Wang, T.-S. Ding, C. R. Chiou, B. S. Shieh, F. S. Hsu, and H. W. Yuan. 2009. Nest site restoration increases the breeding density of blue-tailed bee-eaters. Biological Conservation 142:1748-1753.

Yuan, H. W., M. K. Wang, W. L. Chang, L. P. Wang, Y. M. Chen, and C. R. Chiou. 2006a. Soil composition affects the nesting behavior of blue-tailed bee-eaters (Merops philippinus) on Kinmen Island. Ecological Research 21:510-512.

Yuan, H. W., D. Brent Burt, L. P. Wang, W. L. Chang, M. K. Wang, C. R. Chiou, and T. S. Ding. 2006b. Colony site choice of blue‐tailed bee‐eaters: influences of soil, vegetation, and water quality. Journal of Natural History 40:485-493.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top