跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉雅玲
研究生(外文):Ya-Lin Liu
論文名稱:含惰性元素之陰離子及芳香族分子的理論探討
論文名稱(外文):Theoretical study on Noble-Gas containing Anionand Aromatic Molecules
指導教授:胡維平
指導教授(外文):Wei-Ping Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:261
中文關鍵詞:有機金屬路易士酸催化劑芳香族貴重氣體惰性氣體
外文關鍵詞:rare-gasnoble-gasaromatic molecules
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文共分為四章,在第一章中我們以ab initio方法計算
F−(NgO)n (Ng = He, Ar, Kr ; n = 1−6)等含惰性元素之陰離子的幾何結
構、結合能、振動頻率、S-T gap以及電荷分布情況。我們發現其結
構皆具有相當高度的對稱性, 當Ng = He, Ar, Kr 時, 以
CCSD(T)/aug-cc-pVTZ方法計算結合能分別為19−39, 37−134, 58−231
kcal/mol。配合電荷分布結果分析,我們認為此類型陰離子的高穩定
度來自charge-induced Ng=O鍵的生成,而多個NgO配位單元可同時在
F− 陰離子周圍產生更高的結合能。
第二章我們計算了一系列的陰離子X−NgO (Ng = He, Ar, Kr; X =
F, Cl, OH, HBeO, OBO, CF3O等) 的最佳化結構及陰離子的穩定性。
我們發現釵h不同較小的X− group對NgO有著相似的極化能力,而這
些陰離子的穩定性與電子親和力(EA)大小有相當大的關係,EA值較
大通常較有利於陰離子的穩定,計算結果顯示X−NgO (Ng=Ar, Kr;
X=Cl, HBeO, HBN, OBO, CF3O)等數種陰離子可在低溫下穩定存在。
在第三章中,我們以理論方法預測含鈍氣的芳香族分子的穩定
性,並探討不同數量的氟取代基在不同位置上對此類惰性氣體分子穩
定性的影響。我們發現隨著氟原子個數的增多,線性解離的穩定度會
隨之下降,但解離路徑Ng + FR 的解離能障會隨之增加。FKrR反應
I
物總能較F + Kr + R產物總能低15 kcal/mol以上,放熱解離路徑Kr +
FR也有約30 kcal/mol左右的解離能障,根據我們的計算結果,有些
芳香族分子如FKr(2,6-F2-Ph) 與FKr(2,6-F2-Py)可在適當的條件下被
合成出來。
第四章我們以DFT (density functional theory)方法及TD-DFT
(time-dependent density functional theory) 方法預測有機金屬錯化合物
[P(2-Py)3M(CO)n(NO)3-n](3-n)+ (M = Cr, Mo, W; n = 1−3)的最佳化結構、
IR和UV-Vis吸收光譜並與實驗結果比較。此外,以TD(50-50)方法計
算結果顯示 P(2-Py)3Cr(CO)2(NO)+ 與P(2-Py)3Cr(CO)(NO)2
2+ 之
ground electronic state為triplet state,此結果與實驗上NMR光譜及磁偶
極矩的測量結果相符。
In the first chapter, we have calculated the molecular geometries,
association energies and charge distribution of the noble-gas containing
anions F−(NgO)n (Ng = He, Ar, Kr; n = 1−6) using the MP2 theory with
the Dunning basis set. The geometries of these anions were found to be
highly symmetric. The predicted ranges of association energies were
19−39, 37−134, 58−231 kcal/mol for Ng = He, Ar, and Kr, respectively.
The stability of these anions was due to the charge-induced formation of
the Ng−O bonds. As the size of the system increases, the charge
separation along the Ng−O bond decreases, while the fluorine atom
remains fully charged.
In chapter two, we studied the geometry and stability of a series of
noble-gas anions X−NgO (X = F, Cl, OH, HBeO, OBO, CF3O, and etc).
The induced NgO bond strengths were similar for different X−. In many
cases, the stability of X−NgO depends strongly on the electron affinity of
X.
In chapter three, the aromatics and their fluorinated derivatives
compounds, FNgR (R = phenyl, pyridyl, pyrimidinyl, 1,3,5-triazinyl
group; Ng = He, Ar, Kr), have been studied by using ab initio calculation
III
and DFT theory. The results indicated that as the number of fluorine
atoms increases, the FNgR molecules will be less following than the
three-body decomposition channel F + Ng + R, while the energy barriers
for the exothermic decomposition channel Ng + FR increase. Most
aromatic fluorine compounds, FKrR, are predicted to be about 15
kcal/mol lower in energy as compared to the three-body dissociation
products F + Kr + R. The energy barriers for the extremely exothermic
decomposition channel Kr + FR are about 30 kcal/mol. We believe that
some aromatic fluorine compounds such as FKr(2,6-F2-Ph),
FKr(2,6-F2-Py) can be synthesized under suitable conditions.
In chapter four, we have studied the organometallic complexes
[P(2-Py)3M(CO)n(NO)3-n](3-n)+ (M = Cr, Mo, W;n = 1−3) including
structures, IR and UV-Vis spectra by using the density functional theory
and time-dependent (TD) density functional theory. The calculated
structures, IR and UV-Vis spectra are compared to the experimental
results. The TD-DFT calculation also indicated that both
P(2-Py)3Cr(CO)2(NO)+ and P(2-Py)3Cr(CO)(NO)2
2+ may have a triplet
ground state. This is in consistent with the observed NMR spectra and
magnetic dipole moment measurements.
中文摘要……………………………………………………………….I
英文摘要……………………………………………………………….III
第一章 含惰性元素之陰離子F−(NgO)n (Ng = He、Ar、Kr ; n = 1−6)
理論預………………………………………………………1
1.1 前言…………………………………………………..2
1.2 計算方法.…………………………………………….5
1.3 結果與討論………………….……………………….7
1.4 結論………………….………………………………15
1.5 參考文獻………………….…………………………16
圖表………………….……………………………………..19
附錄座標…………………………………………………...38
第二章 含惰性元素之陰離子X−NgO (Ng = He、Ar、Kr)的理論預
測…………………………………………………………..56
2.1 前言………………………………………………….57
2.2 計算方法.……………………………………………59
2.3 結果與討論………………….………………………60
2.4 結論………………….………………………………64
2.5 參考文獻………………….…………………………65
圖表………………….……………………………………..67
附錄座標…………………………………………………...89
第三章 惰性芳香族氟化物……………………………………… 106
3.1 前言…………………………………………………107
3.2 計算方法.…………………………………………...110
3.3 結果與討論………………….……………………...114
3.4 結論………………….……………………………...124
3.5 參考文獻………………….………………………...131
3.6 分子結構圖…...………….………………………...133
表格…………….………………………………….………140
附錄座標…………………………………………………..147
第四章 有機金屬錯化合物 [P(2-Py)3M(CO)n(NO)3-n](3-n)+
(M = Cr, Mo, W;n = 1−3) 的理論探討……………...….185
4.1 前言…………………………………………………186
4.2 計算方法.…………………………………………...195
4.3 結果與討論………………….……………………...197
4.4 結論………………….……………………………...220
4.5 參考文獻………………….……………………….. 221
圖表…………...…………….……………………………..223
附錄座標………………………………………………….. 244
理論方法簡介………………………………...…………….…………255
[1] N. Bartlett, Proc. Chem. Soc. (1962) 218.
[2] M. Pettersson, J. Lundell, M. Räsänen, J. Chem. Phys. 102 (1995)
6423.
[3] M. Pettersson, J. Lundell, M. Räsänen, J. Chem. Phys. 103 (1995)
205.
[4] M. Pettersson, J. Lundell, L. Khriachtchev, M. Räsänen, J. Chem.
Phys. 109 (1998) 618.
[5] K.O. Christe, Angew. Chem. Int. Ed. 40 (2001) 1419.
[6] M. Pettersson, J. Lundell, M. Räsänen, Eur. J. Inorg. Chem. (1999)
729.
[7] L. Khriachtchev, M. Pettersson, N. Runeberg, J. Lundell, M.
Räsänen, Nature 406 (2000) 874.
[8] L. Khriachtchev, M. Pettersson, A. Lignell, M. Räsänen, J. Am.
Chem. Soc. 123 (2001) 8610.
[9] R. B. Gerber, Annu. Rev. Phys. Chem. 55 (2004) 55.
[10] T.-H. Li, C.-H. Mou, H.-R. Chen, W.-P. Hu, J. Am. Chem. Soc. 127
(2005) 9241.
[11] H. Kuntttu, J. Seetula, M. Räsänen, V. A. Apkarian, J. Chem. Phys.
96 (1992) 8.
[12] L. Khriachtchev, H. Tanskanen, J. Lundell, M. Pettersson, H.
Kiljunen, M. Räsänen, J. Am. Chem. Soc. 125 (2003) 4696.
[13] C. Møller, M. S. Plesset, Phys. Rev. 46 (1934) 618.
[14] T. H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007.
[15] R. A. Kendall, T. H. Dunning Jr., J. Chem. Phys. 96 (1992) 6796.
17
[16] D. E. Woon, T. H. Dunning Jr., J. Chem. Phys. 98 (1993) 1358.
[17] A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning Jr., J.
Chem. Phys. 110 (1999) 7667.
[18] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon,
Chem. Phys. Lett. 157 (1989) 479.
[19] Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.
Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M.
Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S.
Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A.
D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A.
G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.
Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, (2004)
[20] G. L. Miessler, D. A. Tarr, Inorganic Chemistry Pearson Prentice
Hall, NJ, 2004, p. 328.
18
[21] T.-H. Li, Y.-L. Liu, R.-J. Lin, T.-Y. Yeh, W.-P. Hu, Chem. Phys.
Lett. 424 (2007) 38.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top