跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文理
研究生(外文):Huang, Wen-Lii
論文名稱:滲透壓誘導水稻癒合組織植株再生過程中碳水化合物代謝之研究
論文名稱(外文):Studies on Carbohydrate Metabolism in Rice Callus During Shoot Regeneration Induced by Osmotic Stress
指導教授:劉麗飛---
指導教授(外文):Liu Li-Fei
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學系研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:1998
畢業學年度:86
語文別:中文
論文頁數:226
中文關鍵詞:水稻癒合組織芽體再生滲透壓碳水化合物代謝
外文關鍵詞:Rice(Oryza sativa)CallusShoot regenerationOsmotic stressCarbohydrate metabolism
相關次數:
  • 被引用被引用:10
  • 點閱點閱:558
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文之目的是為了瞭解水稻癒合組織在滲透壓處理下誘導植株再生之可能機制,主
要探討滲透壓處理、內生性植物荷爾蒙含量、碳水化合物代謝、與植株再生四者間的關聯
性,並嘗試找出植株再生的『再生相關因子』。
本研究採用兩個水稻品種,由幼胚誘導癒合組織進行植株再生試驗,一品種為具有高
植株再生能力的矮南早 39 (ANT39),另一為植株分化能力低的台南 5 號 (TN5),但經高
濃度代謝性的蔗糖 (TN5-Suc) 或非代謝性的甘露糖醇 (TN5-M) 滲透壓處理,可顯著提高
植株再生能力。利用這些培養系統進一步調查癒合組織生長情形及碳水化合物代謝相關分
析,包括碳水化合物含量(蔗糖、葡萄糖、與澱粉含量)、蔗糖分解酵素(soluble
invertase, Sol-IT;bound invertase, Bound-IT;sucrose synthase, SS)、澱粉代謝
相關酵素(ADP glucose pyrophosphorylase, AGPase;starch phosphorylase, SPase;
total amylase, T-Amy;α-amylase, α-Amy;β-amylase, β-Amy)分析等等,最後並
分析以外加植物荷爾蒙取代滲透壓處理誘導植株再生的癒合組織中碳水化
合物之代謝情形。
試驗結果發現,具高分化能力的 ANT39-Dry、TN5-Suc18 (MSD10 培養基中含18% 蔗
糖處理)、及 TN5-M6 (MSD10 培養基中含 0.6M 甘露糖醇處理) 癒合組織生長較慢,細胞
內水分含量低,尤其是細胞內水勢、滲透勢明顯低於不具分化能力的 TN5,顯示細胞內滲
透壓狀態和植株再生有密切相關。由碳水化合物含量的分析結果發現,在癒合組織誘導階
段,具高分化能力的 ANT39-Dry、TN5-Suc18、及 TN5-M6 細胞內澱粉與蔗糖含量顯著高於
不具分化能力的 TN5;將其移到分化培養基後,葡萄糖含量隨即明顯提高
或維持一定濃度,
而澱粉與蔗糖含量則會隨培養天數逐漸減少;另外, 此種高分化能力癒合組織中澱粉消長
的情形,也可從組織切片中明顯觀察到;而不具分化能力的 TN5 癒合組織中,三種碳水化
合物含量均沒有顯著變化,從組織切片中也無法觀察到澱粉的消長。本研究因此提出在癒
合組織誘導階段中,細胞內的高澱粉含量與在植株分化階段初期,細胞內
的高葡萄糖含量,
可能是造成水稻植株再生的兩個重要『再生相關因子』。
雖然高分化能力的 ANT39-Dry 與 TN5-M6 有類似碳水化合物含量變化,但由代謝相
關酵素分析的結果發現,兩系統可能有不同的代謝途徑。ANT39-Dry 癒合組織誘導時期,
Bound-IT 與 SS 活性低,Sol-IT 活性高,推測蔗糖可能比較容易經由蔗糖轉運子進入細
胞中;AGPase 與 α-Amy 均高於低分化能力的 ANT39-Wet 者,顯示其高澱粉含量主要可
能是因為合成的增加;而分化初期 ANT39-Dry 即有高α-Amy 蛋白質表現與酵素活性,顯
示此時高葡萄含量除從培養基吸收外,也有相當比例是由細胞內澱粉與蔗糖分解而來。另
一方面,TN5-M6 癒合組織誘導時,Sol-IT、Bound-IT 與 SS 活性均大幅度增加,顯示蔗
糖可能經由酵素分解的途徑進入細胞內,而此時AGPase 活性沒有改變,但 α-Amy 表現
明顯被抑制,表示其澱粉的累積主要可能是因分解減少所造成;而分化初期,Sol-IT 與
Bound-IT 兩種蔗糖分解酵素活性均明顯高於不具分化能力的 TN5,顯示 TN5-M6 高量葡
萄糖可能一部份來自貯存於細胞內與培養基中蔗糖的分解。此時澱粉含量雖然減少,但是
澱粉分解酵素活性仍低,推測有可能經由其他途徑,例如 SPase 進行分解。
進一步由酵素免疫組織定位分析的結果發現,三種澱粉代謝相關酵素(SPase、
α-Amy、與 β-Amy)表現的位置均和澱粉粒的分佈有關,此外,α-Amy 也出現在分化中
的輸導組織(TEs)中。另外,水稻三種蔗糖合成酵素的同功酵素(SS1, SS, SS3),均
可在癒合組織中發現,但以 SS1 為主,且廣泛分佈在 TEs 及癒合組織外圍細胞,另外,
SS1 也可能和澱粉生合成有關;而 SS2 與 SS3 表現均弱,只在一些特化組織及少數薄壁
細胞中表現。利用一個可能是水稻 Bound-IT 的抗體分析後發現,其主要在癒合組織外圍
細胞,尤其是和培養基的接觸面附近細胞中表現,此外,此蛋白質也和體胚形成與芽體分
化有密切相關,會一直存在分化過程不同階段的組織中。
TN5 癒合組織誘導時,利用外加 IAA 合成前驅物,Anthranilic acid 與 ABA 同時
處理,可減緩癒合組織生長,降低細胞內水分含量與滲透勢,而澱粉與可溶性糖均顯著增
加,移到分化培養基後,分化初期葡萄糖含量高,澱粉與蔗糖含量則逐漸下降,植株分化
率提高,均和滲透壓處理有類似反應。進一步由酵素表現情形得知,IAA 與 ABA 抑制 SS
、Sol-IT、Bound-IT、 與澱粉水解酵素活性,推測可能促進蔗糖由蔗糖轉運子進入細胞
的途徑,並抑制澱粉分解,由以上結果可證明滲透壓處理下,有一些反應確實是透過內生
IAA 與 ABA 含量的改變調控碳水化合物代謝,並導致植株再生,不過也
有另外一些反應,
是由滲透壓透過其他調控因子的作用來達成。
This thesis was conducted to explore the possible mechanisms of shoot rege
neration from rice callus induced by osmotic stress. The relationships among
osmotic stress, endogenous phytohormone levels, carbohydrate metabolisms,and s
hoot regeneration were studied. In addition, the "regeneration-related factor
s" were discussed in this thesis. The calli were induced from immature embr
yos of two rice cultivars (Oryza sativa L.) and used for regeneration experime
nts. One is Ai-Nan-Tsao 39, ANT39, whose callus showed high shoot regeneratio
n ability. The other is Tainan 5, TN5, whose callus showed greatly increased
regeneration frequency only after being exposed to an osmotic stress exerted b
y either metabolizable (ex. sucrose) or non-metabolizable (ex. mannitol) sacch
arides. At first, the callus growth, shoot regeneration frequency, water and
osmotic potentials of culture mediumand callus under different osmotic stress
treatment were determined. Then, the cellular contents of soluble sugars and
starch, and the cellular localization and activities of enzymes related to the
ir metabolism, including Sol-IT, Bound-IT, SS, AGPase, SPase, α-Amy, and β-A
my of rice calli and shoot regenerating tissues were systematically analyzed.
Finally, changes of carbohydrate metabolism was further investigated in TN5-An
A treatment, in whichosmotic stress was replaced by 2mM anthranilic acid and 1
00μM ABA. The results showed, highly regenerable callus, ANT39-Dry, TN5-Su
c18, and TN5-M6, have lower callus growth rate, water content, cellular water
and osmotic potentials than un-regenerable callus, TN5. It suggested that sho
ot regeneration is closely related to cellular osmotic status. In addition, h
igher starch and sucrose contents at callus induction stage and a sudden incre
ase or retaining higher glucose content at the first day after the callus bein
g transferred to regeneration medium were found in highly regenerable callus.
The starch and sucrose contents were decreased during shoot regeneration. Th
e phenomenon of starch accumulation and disappear were also observed from hist
ochemical analysis. On the other hand, there are no significant changes in ca
rbohydrate contents and histochemical appearance in un-regenerable callus. We
concluded, therefore, the higher starch content at callus induction stage and
higher glucose content at the initiation of shoot regeneration stage were bot
h the important "regeneration-related factors" in rice callus. The carbohyd
rate metabolic pathway was different between ANT39-Dry and TN5-M6 although the
changes of carbohydrate contents were similar. In ANT39, the lower Bound-IT
and SS, higher Sol-IT activity at callus induction stage suggested that sucros
e might be uptaken by sucrose transporter mainly. In addition, both AGPase an
d α-Amy are higher at this stage suggested that the higher starch content is
the result of higher stasch biosynthetic ability. At the initiation of shoot
regeneration stage, higher expression and enzyme activity of α-Amy, higher So
l-IT, and lower Bound-IT and SS activity were found. These results might expl
ain that the higher glucose content might come from degradation of both starch
and sucrose. In contrast, it showed greatly increase of Sol-IT, Cound-IT, an
d SS at callus induction stage in TN5-M6. It suggested that sucrose uptake fr
om sucrolytic pathway dominantly. At the same time, TN5-M6 showed similar AGP
ase but lower α-Amy activity than TN5. Thestarch accumulation, therefore, mi
ght be caused by lower degradation of starch in TN5-M6. At the initiation of
shoot regeneration stage in TN5-M6, higher Bound-IT and Sol-IT, lower amylase
activity were found. It might suggest that higher glucose content is due to h
igher sucrose uptake by Bound-IT mainly. Because starch content was also decr
eased at the same time, it might have another starch degradation pathway, for
example, SPase, which showed higher SPase activity at this stage in TN5-M6.
According to the observation of immunohistochemistry, it showed the distribut
ions of SPase, β-Amy, and α-Amy are related to starch granules deposition.
In addition, α-Amy is also localized at tracheary elements (TEs).SS1 was more
dominantly localized at TEs and peripheral cells in callus. Besides, SS1 mig
ht be related to starch biosynthesis. On the other hand, SS2 and SS3 were les
s detected and only localized at some specialized tissues and parenchyma. A B
ound-IT-like antibody was used in this thesis. It localized at peripheral cel
ls especially at the side attached culture medium. In addition, it closely re
lated to somatic embryogenesis and organogenesis during shoot regeneration.
When TN5 callus was induced in MSD10 medium containing anthranilic acid andAB
A, it showed slower callus growth, lower cellular water content and osmotic po
tential, and higher starch and soluble sugars contents. After being transferr
ed to regeneration medium, it also showed higher glucose content and decreased
starch and sucrose contents. All the phenomenons were similar to those under
osmotic stress treatment. Higher IAA and ABA levels inhibited all the sucrol
ytic enzyme (Sol-IT, Bound-IT, and SS) and amylase activity. Therefore, the hi
gher soluble sugars and starch contents might be resulted fromsucrose uptaking
by sucrose transporter dominantly and inhibiting starch degradation, respecti
vely. In conclusion, osmotic stress induced some changes of carbohydrate meta
bolism, and was brought about shoot regeneration. Part of those changes were
regulated by changes of endogenous IAA and ABA levels. But there are some pro
cesses induced by osmotic stress might be regulated by other factors during sh
oot regeneration.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊