跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王威智
研究生(外文):Wei-Chih Wang
論文名稱:台灣彰化濱海離岸風機支撐結構樁基礎之動態分析
論文名稱(外文):Dynamic analyses of pile foundation for supporting structure of off-shore wind turbine at Changhua coast in Taiwan
指導教授:林德貴林德貴引用關係
指導教授(外文):Der-Guey Lin
口試委員:陳水龍范嘉程簡連貴
口試委員(外文):Shong-Loong ChenChia-Cheng FanLien-Kwei Chien
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:183
中文關鍵詞:離岸風機樁基礎三維有限元素程式反覆載重地震載重
外文關鍵詞:offshore wind turbinepile foundationthree-dimensional finite element programcyclic loadingearthquake loading
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用彰化濱海風場實際量測資料,並藉由三維有限元素數值分析,來探討離岸風機單樁基礎之動態反應特性及其力學變形行為。首先,依據離岸風場之海床鑽探資料(土壤統一分類法及標準貫入試驗SPT-N值),來推估數值模型所需之土壤材料參數。參考國際離岸風機支撐結構樁基礎之設計案例及載重規範,可決定風場場址之組合載重,並初步設計適合場址之樁基幾何尺寸。其次,各進行一組單樁模型靜態及動態載重試驗數值模擬,並比對模擬結果及量測成果之吻合度。由比對結果得知,靜態載重方面:單樁之水平載重~水平位移關係曲線(H~h曲線)、樁身水平位移、彎矩分布及動態載重方面:樁頭加速度之模擬值與量測值相當吻合。另外,採用莫爾-庫倫土壤模式(MC-Model)、小應變硬化土壤模式(HSS-Model)及埋置樁(Embedded Beam)結構元素,來模擬土層與樁基承受水平載重及加速度載重之樁/土互制行為非常適宜並可獲得滿意之結果。
隨之,建立離岸風機單樁基礎之三維數值模型,並模擬其在承受風力及波浪力反覆載重,以及地震載重作用下,土壤與樁基之互制力學行為。在數值模型中,改變不同樁長(L=30、40、50 m)、不同風力及波浪力載重,作為數值變數,以測試其單樁基礎之動態反應特性及其力學變形行為之影響。對於不同樁長之單樁,在各種組合載重作用下可求得其樁身之側向位移曲線、樁身彎矩曲線、樁頭加速度歷時曲線及樁頭水平位移歷時曲線。此外,再探討單樁基礎承受地震載重之動態反應。
由分析結果可知:(1)單樁承受垂直載重及側向反覆載重作用之模擬過程中,土體位移之影響範圍會隨著載重之增加而逐漸擴大,且大變形侷限發生於靠近海床面樁/土界面周圍之土層。(2)單樁在承受風力及波浪力反覆載重時,改變樁長對樁的水平位移影響不大。(3)隨著風力載重之不斷提高,樁頂相對於樁底之相對位移差以及樁身彎矩,越趨於增大。此結果造成樁體極易發生斷裂破壞,且最大彎矩集中在樁長深度約L/5 ~ L/3的位置。(4)波浪力反覆載重作用不斷增強,樁身之水平位移也隨之增加。在彎矩方面,也會隨著載重增強而增大,其最大彎矩發生位置在樁長深度約2 L/5 ~2 L/3的位置。(5)在地震模擬當中,樁身彎矩分布將會發生在樁長深度約2 L/5 ~3 L/5處。


This study use the actual measurement data of the wind farm at Chang-Hua coast of western Taiwan, then under the simulation by three-dimensional (3-D) finite element program Plaxis 3-D. This study investigates the dynamics reactions and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chan-Hua coast of western Taiwan for the supporting structure of offshore wind turbine.
Firstly, using the boring logs, SPT-N values, and laboratory tests of undisturbed samples from the wind farm, one can estimate the required material model paramters of soil strata for numerical model. In addition, consulting the commonly used interanational design criteria and recent case histories, one can preliminarily determine the combined design loading and pile geometries which are appropriate for the environments of wind farm selected for the installation of offshore turbine. Secondly, numerical analyses were performed on lateral loading tests of monopile in laboratory and the shaking table of monopile, then compare the results between the simulation and measurement of the tests were made to calibrate the required soil/pile material model parameters. The comparisons show that the simulations of H~h curves, lateral displacement, bending moment distribution of pile shaft, and the acceleration of the pile head are in excellent agreement with the measurements. In addition, the numerical results indicate the utilizatons of Mohr-Coulumn soil model, Hardening soil model with small strain and embedded pile structural element enable a satisfactory simulation of the soil/pile interaction behaviors when subjected to the lateral loading and the acceleration loading.
Subsequently, 3-D numerical models of monopile for offshore turbine were constructed to simulate the soil/pile interaction behaviors subjected to various combined loadings. In numerical model, various pile length L, wind loading Fwind and wave loading Fwave were selected as design parameters to inspect their effects on the dynamic reactions and deformation behaviors of pile foundation. For different design parameters, which includes three pile lengths (L=30, 40, and 50 m) various depth~displacement curves, the various bending moment of pile curve, the acceleration curve and the displacement duration curve of pile head. In addition, a dynamic simulation was carried out on a monopile whne subjected to earthquake loading to inspect the soil/pile interaction responses.
Based on the numerical results, several conclusions can be made:(1) In the process of the simulation on a monopile with vertical static loading and lateral cyclic loading, the influence area of the strata will be larger along with the larger loading. And the mega deformations will appear at the upper strata area.(2) There is nearly no impact on the pile displacement by changing the pile length.(3) As the wind loading constantly getting larger, the displacement and bending moment of pile will become larger. The pile will be easily to meet the tensile failure, and the position of the maximum bending moment will be at the depth L /5 ~ L /3.(4) when the wave loading getting bigger, the displacement and bending moment of pile will become larger. The position of the maximum bending moment will be at the depth 2 L/5 ~2 L/3.(5) During the earthquake simulations, the position range of pile bending moment is between the depth 2 L/5 ~3 L/5.


摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 前言 1
1.1研究動機 1
1.2研究目的 1
第二章 文獻回顧 2
2.1現有離岸風場支撐結構之基礎概況 2
2.1.1離岸風機支撐結構之基礎類型 2
2.2設計規範 6
2.2.1環境條件 6
2.2.2載重條件 7
2.2.3基礎設計 11
2.3共振效應 20
2.3.1基本介紹 20
2.3.2離岸風機基本頻率 21
2.3.3自然振動頻率分析模型 23
2.4離岸風機基礎之實作及模型試驗案例 27
2.4.1實作案例 27
2.4.2模型試驗案例 29
2.5離岸風機基礎之靜態分析案例 44
2.6離岸風機基礎之動態分析案例 53
2.6.1數值模擬案例 53
2.7有限元素程式 Plaxis 3-D (2015) 69
2.7.1理論背景 69
2.7.2元素類型 69
2.7.3土壤材料模型 71
第三章 研究方法 75
3.1研究流程 75
3.2國內離岸風場場址基本資料蒐集 77
3.2.1地質鑽探及地球物理探測資料 77
3.2.2現地及室內土壤材料試驗資料 78
3.2.3海象環境資料 78
3.2.4離岸風場場址土層剖面 81
3.3程式有效性驗證 86
3.3.1朱斌等人(2013) 86
3.3.2翁作新等人(2009) 88
3.4建立場址載重效應組合 90
3.4.1靜載重 90
3.4.2風力反覆載重 91
3.4.3波浪反覆載重 92
3.4.4地震載重 94
3.5建立支撐結構樁基礎之3-D數值模型 95
3.5.1單樁之3-D數值模型 95
3.6執行數值分析 101
3.6.1靜態分析 101
3.6.2動態分析 102
3.6.3地震分析 103
第四章 結果與討論 105
4.1數值分析有效性驗證 105
4.1.1朱斌等人(2013) 105
4.1.2翁作新等人(2009) 109
4.2單樁之力學與變形行為 111
4.2.1單樁施加垂直靜載重Fstatic之力學與變形行為 111
4.2.2單樁施加風力反覆載重Fwind之力學與變形行為 112
4.2.3單樁施加波浪力反覆載重Fwave之力學與變形行為 124
4.3單樁之地震模擬 132
4.4動態分析與靜態分析之比較 134
4.4.1樁身水平位移之差異性 134
4.4.2樁身彎矩之差異性 137
第五章 結論與建議 140
5.1結論 140
5.1.1數值分析有效性驗證 140
5.1.2單樁之力學與變形行為 140
5.1.3動態分析與靜態分析之差異性 140
5.2建議 141
參考文獻 142
附錄 A 鑽孔數據資料 148
附錄 B 鑽孔室內試驗資料 152
附錄 C 場址土層剖面資料 156
附錄 D 數值模擬之分析結果 164


1.Abdel-Rahman, K. and Achmus, M. (2005), Finite Element Modelling of Horizontally Loaded Monopile Foundations for Offshore Wind Energy Converters in Germany. International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Perth, Australia, Taylor & Francis, London, 309-396.
2.Aliasger Haiderali and Gopal Madabhushi (2012), Three-Dimensional Finite Element Modelling of Monopiles for Offshore Wind Turbines. The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM’ 12), Seoul, Korea, August 26-30, 2012.
3.American Petroleum Institute (API) (2000), Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design. API Recommended Practice 2A-WSD (RP2A-WSD), 21st edition, Washington DC.
4.Bhattacharya, S., Wood, D.M., and Lombardi, D. (2011), “Similitude relationships for physical modelling of mono pile-supported offshore wind turbines.” International Journal of Physical Modelling in Geotechnics, Vol.11, No.2, pp. 58-68.
5.Bowles J. (1992), Engineering properties of soil and their measurements. 4th edition, McGraw-Hill, Boston, MA.
6.Broms, B. (1965), “Design of laterally loaded piles.” Journal of Soil Mechanics and Foundation Division, ASCE 91, No. SM3, 79-99.
7.Brown, D.A. and Shie, C.F. (1990). “Numerical experiments into group effects on the response of piles to lateral loading.” Computers and Geotechnics, 10 (3): 211-230.
8.Budhu, M.,(2000), “Soil Mechanics and Foundations”, Wiley, pp. 84-89.
9.Byrne, B.W. and Houlsby, G.T. (2003), “Foundations for Offshore Wind Turbines.” Philosophical Transactions of the Royal Society of London, Series A, Vol. 361, December, pp. 2909-2930.
10.Coduto, D. P. (1994). Foundation Design, Principles, and Practices. Prentice-Hall, Englewood Cliffs, N.J., 796 pp.
11.Coyle, H. M., and Castello, R. (1981), “New Design Correlations for Piles in Sand.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT 7, pp. 965-986.
12.Das, Braja M., (2011), Principles of Foundation Engineering, 7th edition, Thomson, Toronto.
13.de Vries W. E., and van der Tempel J. (2007), Quick Monopile Design. Proceedings, European Offshore Wind Conference, Berlin, Germany.
14.Design Manual 7.2. (1982), Foundation and earth structures. US Navy, Washington, DC.
15.Det Norske Veritas (DNV) (2004), Design of Offshore Wind Turbine Structures, Offshore Standard DNV-OS-J101, Jun 2004.
16.Duncan, J.M., Chang, C.Y. (1970), Nonlinear Analysis of Stress and Strain in Soils. Journal of Soil Mech, Fdns Div., ASCE, Vol. 96, No. SM 5, pp. 1629-1653.
17.Dunham, J.W. (1954), “Pile Foundations for Buildings.” Proc. ASCE, Soil Mechanics and Foundation Division.
18.Dunnavant, T.W. and O’Neill, M.W. (1989), “Experimental p-y model for submerged stiff clay.” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 1, pp. 95-114.
19.Germanischer Lloyd (GL) (2010), “Guideline for the Certification of Wind Turbines.” Edition 2010, Hamburg, Germany.
20.Hammar, L., Andersson, S., and Rosenberg, R. (2010), Adapting offshore wind power foundations to local environment. translated by Dimming, A., Vindval report 6367, (Broma).
21.Hardin, B.O., Drnevich, V.P. (1972), Shear Modulus and Damping in Soils: Design Equations and Curves. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692.
22.International Electrotechnical Commission (IEC) (2005), Wind Turbines-Part 1: Design Requirements. International Standard: IEC 61400-1, Edition 3.0.
23.International Electrotechnical Commission (IEC) (2009), Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines. International Standard: IEC 61400-3.
24.International Organization for Standardization (ISO) (2003), Petroleum and Natural Gas Industries-Specific Requirements for Offshore Structures-Part 4: Geotechnical and Foundation Design Considerations. International Standard ISO 19901-4.
25.Janbu, N. (1963), Soil compressibility as determined by oedometer and triaxial tests. Proc. ECSMFE, Wiesbaden, 1:19-25.
26.Jeong, S., Kim, Y., and Kim, J., (2011), “Influence on lateral rigidity of offshore piles using proposed p-y curves.” Ocean Engineering, Vol.38, pp.397-408.
27.Jonkman, J.M., Butterfield, S., Musial, W., and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, USA.
28.Kondner, R.L. (1963), A Hyperbolic Stress Strain Formulation for Sands. Proc. 2nd Pan American ICOSFE, Vol. 1, pp. 289-324, Brazil.
29.Kourkoulis R., Gelagoti F. and Kaynia A. (2012), Seismic Response of offshore wind turbine foundations. 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
30.Krolis, V.D., van der Tempel, J. and de Vries, W. (2007), Evaluation of foundation design for monopile support structures for offshore wind turbines. European Offshore Wind Conference 2007, 7 pp., Germany.
31.Lesny, K. (2008), Foundations for offshore wind energy converters-Recommendations for concept and design. BAUTECHNIK, 85(8), 503-511.
32.Matlock, H. (1970). Correlation for Design of Laterally Loaded Piles in Soft Clays. Paper No. OTC 1204, Proceedings, Second Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594.
33.Meyerhof, G.G. (1976), Bearing capacity and settlement of pile foundations, Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT3, pp. 195-228.
34.Murchison J.M., and O''Neill M.W. (1984), Evaluation of p-y relationships in cohesionless soils. Analysis and Design of Pile Foundations. Proceedings of a Symposium in conjunction with the ASCE National Convention, pp. 174-191.
35.Reese, L.C., Cox, W.R., and Koop, F.D. (1974), Analysis of Laterally Loaded Piles in Sand. Proceedings of the Fifth Annual Offshore Technical Conference, Vol. II, Paper OTC 2080, Houston, Texas, pp. 473-485.
36.Santos, J.A., Correia, A.G. (2001), “Reference threshold shear strain of soil, its application to obtain a unique strain-dependent shear modulus curve for soil.” In Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 1, A.A. Balkema, Istanbul, pp. 267-270.
37.Schanz, T. and Vermeer, P.A. (1998), Special issue on pre-failure deformation behaviour of geomaterials. Geotechnique, 48, pp. 383-387.
38.Schmertmann, J.H., Hartmann, J.P. and Brown, P.R. (1978), Improved strain influence factor diagrams. Journal of the Geotechnical Engineering Division, ASCE, 104(8): 1131-1135.
39.Siegfriedsen, S., Lehnhoff M., and Prehn A. (2003), Primary markets for offshore wind energy outside the European Union, Wind Engineering, 27, pp. 419-429.
40.S?rensen, S.P.H., Br?dbaek, K.T., and M?ller, M. (2009), Evaluation of Load-Displacement Relationships for Large-Diameter Piles. Long Candidate Project, Aalborg University, Aalborg, Denmark.
41.Stavros Savidis, Ercan Taşan H. and Frank Rackwitz (2011), “Numerical Investigation of Monopile Behavior due to Wind and Water Wave Loading.” Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, S. 3469-3475.
42.Supachawarote C., Randolph M.F. and Gourvenec S. (2004), “Inclined pull-out capacity of suction caissons.” Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France.
43.TANG Xiao-wei, SHAO Qi and LIU Bing-xue (2011), 3D FEM analysis on bearing capacity behaviors of tri-piles foundation for offshore wind turbines. Multimedia Technology (ICMT), 2011 International Conference, IEEE, pp. 941-944.
44.Vesic, A.S. (1973), “Analysis of ultimate loads of shallow foundations.” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 99, No. SM1, pp. 45-73.
45.Vijayvergiya, V.N. and Focht, J.A. Jr. (1972), “A new way to predict the capacity of piles in clay.” 4th Annual Offshore Technology Conference, Houston, Vol. 2, pp. 865-874.
46.Wu Ke, Chen Rong and Li Shucai (2009), Finite element modeling of horizontally loaded monopile foundation of large scale offshore wind turbine in non-homogeneity clay. [C], WRI World Congress on Software Engineering, 2:329-333.
47.Swagata Bisoi and Sumanta Haldar (2014), Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction, soil Dynamics and Earthquake Engineering 63 p19-35,India
48.Martin Achmus , Yu-Shu Kuo, Khalid Abdel-Rahman (2009), Behavior of monopile foundations under cyclic lateral load, Computers and Geotechnics 36 (2009) 725–735, Germany
49.丁紅岩、翟少華、張浦陽(2013),「海上風電大尺度頂承式筒型基礎承載力特性有限元分析」,工程力學,2013年06期,pp.124-132。
50.工研院綠能與環境研究所(2010),「台灣陸海域風能潛力評估」。
51.內政部營建署(2001),「建築物基礎構造設計規範」,營建雜誌社。
52.王志雲、王忠濤、欒茂田、王棟(2008),「吸力式沉箱基礎極限拉拔承載力的數值分析」,岩土力學,29(6):1545-1550。
53.王俊嶺、閆澍旺、霍知亮(2013),「複合載入模式下海上風機樁基礎破壞機制研究」勘察科學技術,2013年第1期。
54.台灣電力公司(2015),「離岸風力發電第一期計畫可行性研究」。
55.交通部運輸研究所(2005),「港灣構造物設計基準修訂」,ISBN:986-00-0557-5。
56.朱斌、朱瑞燕、羅軍、陳仁朋、孔令剛(2010)「海洋高樁基礎水平大變位性狀模型試驗研究」,岩土工程學報,32(4):521-530。
57.朱斌、熊根、劉晉超、孫永鑫、陳仁朋(2013),「砂土中大直徑單樁水平受荷離心模型試驗」,岩土工程學報,35(10):1807-1815。
58.吳元康、王醴、林輝政、柯裕隆(2010),「國外離岸風場政策與簡介」,國科會能源國家型科技計畫之離岸風力主軸計畫。
59.林大惠、林淑真、廖益廷、蒲仁勇、顏名億、黃資詠、張珮錡、林雅淇、蘇峰堅、賴堅戊(2012),「能源國家型科技計畫離岸風力主軸專案計畫(總計畫)暨風力發電子項計畫100年策略規劃」,行政院國家科學委員會專題研究計畫,國立成功大學機械工程學系。
60.林郁庭(2013),「以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線」,國立中央大學土木工程學研究所,碩士論文。
61.段鄖峰(2010),「海上風電場風機基礎的選型設計」,水利與建築工程學報,8(1):129-131,十堰市建設委員會。
62.范慶來、欒茂田(2010),「V-H-T荷載空間內海上風機桶形基礎破壞包絡面特性分析」,土木工程學報,43(4):113-118。
63.袁志林、段夢蘭、陳祥余、鐘超、王建國(2012),「水平荷載下導管架平台樁基礎的非線性有限元分析」,岩土力學,33(8):2551-2560。
64.張永利、周勇、李傑(2010),「東海大橋海上風電場基礎設計與分析」,四川建築科學研究,36(5):188-191,同濟大學土木工程學院。
65.張其一(2009),「複合載入模式下地基失效機制研究」,岩石力學學報,30(10):2940-2944。
66.閆澍旺、霍知亮、孫立強、劉潤(2013),「海上風電機組筒型基礎工作及承載特性研究」,岩土力學,34(7):2036-2042。
67.陳華兵、趙彥賢(2012),「S77 R70MT試驗風機基礎設計及施工」,水利水電工程設計DWRHE,31(1)。
68.廖南華(2003),「土壤經驗參數於數值分析之應用」,國立成功大學土木工程研究所,碩士論文。
69.榮冰、張嘎、王富強(2010),「響水海上風機群樁基礎變形特性的有限元分析」,岩土力學,31(2):470-474。
70.劉冰雪、唐小微(2009),「海上風機單樁基礎承載特性三維有限元分析」,大連理工大學,碩士學位論文。
71.劉潤、王磊、丁紅岩、練繼建、李寶仁(2014),「複合加載模式下不排水飽和軟黏土中寬淺式筒型基礎地基承載力包絡線研究」,岩土工程學報,36(1):146-154。
72.劉潤、陳廣思、劉禹臣、徐余(2013),「海上風電大直徑寬淺式筒型基礎抗彎特性分析」,天津大學學報(自然科學與工程技術版),46(5):393-400。
73.賴瑞應、張權、薛強、顧承宇、曾韋緐、徐偉誌、翁健煌、蔡勇賢(2012),「港灣構造物耐震性能設計架構之研究(2/4)」,交通部運輸研究所,臺北。
74.簡連貴、蕭松山、楊文昌、黃偉柏、江允智(2014-1),「離岸式風力發電海事工程規劃設計與施工規範之研究」,科技部研究計畫,基隆。
75.簡連貴、顧承宇、林德貴(2014-2),「離岸風機支撐結構基礎工程設計技術開發委託研究案」,行政院原子能委員會委託研究計畫,國立臺灣海洋大學。
76.鐘超、毛東風、段夢蘭、李志剛、袁志林、王建國(2013),「考慮樁基弱化的導管架平台橫向振動特性試驗研究」,岩土力學,34(1):53-60。
77.楊樹標、張圓圓、賈劍輝(2013),「單樁振動台試驗及其内力分布研究」,世界地震工程,河北工程大學土木工程學院
78.張素珍、鄭七振、王靜靜、林盼盼(2013),「水平地震作用下單樁動力影響數值分析」,水資源與水工程學報,上海理工大學環境與建築學院


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top