跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊智雲
研究生(外文):Chih-Yun Yang
論文名稱:渦旋式流體化床燃燒爐中床內燃燒份額之研究
論文名稱(外文):Study of In-bed Combustion fraction in a Vortexing Fluidized Bed Combustor
指導教授:錢建嵩
指導教授(外文):Chien-Song Chyang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:119
中文關鍵詞:流體化床燃燒爐床內燃燒份額
外文關鍵詞:Fluidized bed combustorIn-bed heat release rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對流體化床鍋爐而言,熱傳管的安排佈置是設計爐體的一大重點其會受燃料於爐內不同區段之釋熱量有很大的影響。同時將燃料於不同區段之釋熱量稱為燃燒份額,可由各區段之耗氧量求之。
本研究使用兩種不同之燃料:煤及刺竹,探討燃料特性與操作變數對床內燃燒份額之影響。於0.8 m長×0.4 m寬×4.7 m高之先導型渦旋式流體化床中進行實驗,將煤及刺竹分別於固定釋熱量130,000 kcal/hr,一次風總風量3 Nm3/min,二次風總風量2 Nm3/min,並在煙氣迴流模式下,改變床下計量氧及粒徑大小,探討操作條件對床內燃燒份額、污染物排放等影響,同時經本實驗室多年來研究燃燒份額之成果,迴歸各實驗數據得一經驗式,可用來模擬及預測各操作變數下,床內之燃燒份額。
實驗結果顯示,對於所有燃料而言,床內之燃燒份額隨床下計量氧增加而增加;煤隨粒徑增大,其床內燃燒份額亦隨之增加;在相同操作條件下,生質物之床內燃燒份額低於煤,係由於生質物含有高含量之揮發份,投料後揮發份易於較高之區域燃燒。此外,經數據迴歸後得床內燃燒份額之經驗式 ,在實驗值與迴歸值之比較上,其平均偏差為13.8%,標準偏差為18.7%,其結果能有效預測及模擬,不同燃料於不同操作參數下之床內燃燒份額,而各操作參數敏感性大小為: 二次風配風比 > 床下計量氧率 ≈ 床溫 > 燃料特性 ≈ 燃料粒徑。


An arrangement of heat exchanger is a key point in the design of fluidized boiler. This arrangement is depend on the amount of heat released in each section of the combustor, including bubbling zone and freeboard zones. In addition, heat release rate is defined as the amount of heat released in each section of the combustor. Heat release rate can be calculated from the oxygen consumption of each section per total oxygen consumption. The purpose of this study is to investigate the relationship between in-bed heat release rate and fuel properties, such as particle size, volatile/fixed carbon ratio. The effects of in-bed stoichiometric oxygen ratio on in-bed heat release rate are also investigated.
Combustor can be divided into two regions from bottom to top, namely, bed zone and freeboard zone. The two types of fuels, coal and thorny bamboo are used as feeding material. The particle size of the coal ranges from 854 to 3644 μm. The operated in-bed stoichiometric oxygen ratios are between 80% and 100%. Total primary air is 3 Nm3/min and the secondary air is 2 Nm3/min. The excess oxygen ratio was kept at 40%. The silica sand is used as the bed material.
The experimental result shows that the in-bed heat release rate is increased with the decreasing volatile/fixed carbon ratio in all fuels. As the mean particle size is increased, the in-bed heat release rate is also increased. Here we regress the data to build the empirical equation, . It can be summarized that the effect of fuel properties on the in-bed heat release rate is insignificant.


目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 緒論 12
第二章 文獻回顧 13
2.1固體燃料之特性及燃燒特性 13
2.1.1化石燃料 15
2.1.2 生質燃料 16
2.2 揮發份燃燒機制 16
2.2.1 揮發份之釋放 17
2.2.2 揮發份之燃燒 21
2.3 固定碳之燃燒機制 22
2.4 操作參數對床內燃燒份額之影響 26
第三章 實驗設備與操作方法 35
3.1 實驗設備 35
3.1.1 渦旋式流體化床燃燒爐主體 35
3.1.2 進料及送風系統 41
3.1.3 熱交換系統 44
3.1.4 煙氣處理系統 45
3.2 燃料與床質特性 51
3.2.1 燃料特性 51
3.2.2 床質 55
3.3 操作方法與實驗參數 57
3.3.1 開爐與操作方法 57
3.3.2 採樣方法與分析儀器 57
3.3.3 操作條件 59
3.4 燃燒份額迴歸方程式 60
3.4.1 多變數非線性迴歸方程式推導 61
3.4.2 操作參數對燃燒份額之敏感性分析 63
第四章 結果與討論 65
4.1床內燃燒份額與操作參數及燃料特性之關係 65
4.1.1 床內燃燒份額與操作參數之關係 65
4.1.1.1 床下計量氧對床內燃燒份額之影響 65
4.1.1.2床溫對床內燃燒份額之影響 67
4.1.1.3二次風配風比對床內燃燒份額之影響 69
4.1.2床內燃燒份額與及燃料特性之關係 70
4.1.2.1 燃料粒徑對床內燃燒份額之影響 70
4.1.2.2 揮發份/固定碳比率對床內燃燒份額之影響 72
4.2床內燃燒份額迴歸經驗方程式之建立 74
4.2.1迴歸經驗式之驗證 78
4.2.1.1迴歸經驗式之驗證-本研究之新數據 78
4.2.2.2迴歸經驗式之驗證-與其他學者 79
4.3操作變數對床內燃燒份額之敏感性分析 81
4.3.1以Saltelli, A.的sensitivity theory對床內燃燒份額作敏感性分析 81
4.3.2以回應曲面法 (Response Surface Methodology, RSM)對床內燃燒份額作敏感性分析 85
第五章 結論與建議 89
5.1 結論 89
5.2 建議 90
符號說明 91
參考文獻 94
附錄 A 液態氮管路之流量計校正曲線 101
液態氮管路二次風浮子流量計之流量校正曲線 101
附錄 B 燃料進料量校正曲線 102
B-1 煤(3644 μ m)進料量校正曲線 102
B-2 煤(854 μ m)進料量校正曲線 103
B-3刺竹造粒進料量校正曲線 104
附錄C 實驗爐操作方法 105
C-1 開爐前準備工作 105
C-2 開爐步驟 110
C-3 停爐步驟 115
附錄 D 氣體分析儀器之規格與功能 118
D-1 氧濃度分析儀 118
D-2 煙道氣體分析儀 119

圖目錄
Fig. 2- 1 Overall schematic of solid fuel combustion (Tillman, 1991). 14
Fig. 2- 2 Plume in the bed. (Park et al., 1980) 19
Fig. 2- 3 Gas and volatile flow patterns around the fuel particle. (Fiorentino et al., 1997) 20
Fig. 2- 4 Schematic of the model for volatile matter combustion.(Atimtay, 1987) 20
Fig. 2- 5 Schematic shrinking particle model. (Levenspiel, 1999) 25
Fig. 2- 6 Schematic shrinking core model. (Levenspiel, 1999) 25
Fig. 2- 7 Schematic uniform internal burning model. (Levenspiel, 1999) 25
Fig. 3- 1 Flow diagram of the vortex fluidized bed combustion system. 36
Fig. 3- 2 Schematic diameter of the vortex fluidized bed combustor. 37
Fig. 3- 3 Schematic diagram of windbox. 39
Fig. 3- 4 Schematic diagram of combustor chamber. 39
Fig. 3- 5 Schematic diagram of freeboard. 40
Fig. 3- 6 Top view of the secondary gas injection in the bubbling fluidized bed combustor. 40
Fig. 3- 7 Flow diagram of system. 43
Fig. 3- 8 Schematic diagram of cyclone. 45
Fig. 3- 9 Schematic diagram of quench tower. 48
Fig. 3- 10 Schematic diagram of bag house. 49
Fig. 3- 11 Schematic diagram of scrubber. 50
Fig. 3- 12 Particle size distribution of 854 μm coal. 52
Fig. 3- 13 Particle size distribution of 3644 μm coal. 52
Fig. 3- 14 Different fuels used in this study. 53
Fig. 3- 15 Cumulative weight percent of silica sand. 56
Fig. 3- 16 Partial differential schematic. 64
Fig. 4- 1 Effects of In-bed stoichiometric oxygen ratio on In-bed heat release rate with various fuels. (total primary gas flow rate = 3 Nm3/min, secondary gas flow rate = 2 Nm3/min, EO = 40%). 66
Fig. 4- 2 Effects of bed temperature on In-bed heat release rate with various fuels. (total primary gas flow rate = 3 Nm3/min, secondary gas flow rate = 2 Nm3/min, Sb = 90%). 68
Fig. 4- 3 Effects of secondary air flow ratio on In-bed heat release rate with crushed peanut shell. (Sb = 90%, Eo = 50%, total primary gas flow rate = 3 Nm3/min, total oxygen = 0.8175 Nm3/min, add 0, 0.44, 0.75, 1 Nm3/min N2 to secondary gas). 69
Fig. 4- 4 Effects of fuel particle size on In-bed heat release rate with various fuels. (total primary gas flow rate = 3 Nm3/min, secondary gas flow rate = 2 Nm3/min, Sb = 90%, EO = 40%). 71
Fig. 4- 5 Effect of volatile/fixed-carbon ratio on In-bed heat release rate within the pilot VFBC. (total primary gas flow rate = 3 Nm3/min, secondary gas flow rate = 2 Nm3/min, Sb = 90%, EO = 40%). 73
Fig. 4- 6 Comparison between regression in-bed heat release rate and experimental in-bed heat release rate of various fuels. 75
Fig. 4- 7 Comparison between new regression in-bed heat release rate and experimental in-bed heat release rate of various fuels. 77
Fig. A-1 Calibration curve of nitrogen at gauge pressure 1 kg/cm2. 101
Fig. B-1 Feeding calibration curve of 3644 μm coal. 102
Fig. B-2 Feeding calibration curve of 854 μm coal. 103
Fig. B-3 Feeding calibration curve of pelletized bamboo. 104


表目錄
Table 2- 1 Approximate and ultimate analysis of fuels in fluidization research laboratory. 30
Table 2- 2 The summary of the various operating parameter on heat release rate from the fluidization research laboratory at Chung Yuan Christian University. 31
Table 3- 1Approximate and ultimate analysis of fuels. 54
Table 3- 2 Particle distribution of silica sand. 56
Table 3- 3 Experimental conditions. 59
Table 4- 1 Operating conditions. 74
Table 4- 5 Sensitivity analysis of all available data in this study. 82
Table 4- 5 Sensitivity analysis of all available data in this study. 83
Table 4- 8 Coded factors, coded levels and corresponding operating parameters and value. 86
Table 4- 9 Five-Factor-Three-Level Box-Behnken experimeantal design 86
Table 4- 10 Sensitivity analysis of each parameter on response surface methodology. 88


參考文獻
Anthony, D. B. and J. B. Howard, “Coal Devolatilization and Hydrogasification, ’’ AIChE J, 22, 625-656 (1976).
Atimtay, A. T., “Combustion of Volatile Matter in Fluidized Beds, ’’ J. R. Grace and J. M. Matsen, Eds., Plenum 159-166 (1980).
Atimtay, A. T., “Combustion of Volatile Matter in Fluidized Beds, ’’ Ind. Eng. Chem. Res., 26 (3), 452-456 (1987).
Broughton, J. and J. R. Howard, “Combustion of Coal in Fluidized Beds”, in “Fluidized Beds Combustion and Applications, ’’ J. R. Howard, Ed., Applied Science Publishers, 37-77 (1983).
Chien-Song Chyang *, Feng Duan , Shih-Min Lin , Jim Tso “A Study on Fluidized Bed Combustion Characteristics of Corncob in Three Different Combustion Modes”, Bioresource Tech., 116: 184~189 (2012).
Donsi, G., L. Massimilla, M. Miccio, G. Russo and P. Stecconi, “The Calculation of Carbon Load and Axial Profiles of Oxygen Concentration in the Bed of Fluidized Combustor, ’’ Combus. Sci. Technol., 21, 25-33 (1979).
Duan ,Feng, Chien-Song Chyang, Yuan-Jie Wang and Jim Tso,” Effect of secondary gas injection on the peanut shell combustionand its pollutant emissions in a vortexing fluidized bed combustor” Bioresource Tech., 154, 201-208 (2014).
Duan, Feng, Chien-Song Chyang*, Chun-Hsuan Hu and Jim Tso, “Combustion Behavior and Pollutant Emission Characteristics of Refuse Derived Fuel (RDF) and Sawdust in a Vortexing Fluidized Bed Combustor” Energy 57, 421-426 (2013a).
Duan, Feng, Chien-Song Chyang*, Chien-Wei Lin and Jim Tso,“Experimental Study on Rice Husk Combustion in a Vortexing Fluidized-Bed with Flue Gas Recirculation (FGR)”, Bioresource Tech., 134, 204-211 (2013b).
Fiorentino, M., A. Marzocchella, and P. Salatino, “Segregation of Fuel Particles and Volatile Matter During Devolatilization in a Fluidized Bed Reactor-Ⅰ. Model Development, ’’ Chem. Eng. Sci., 52, 1893-1908 (1997).
Fuping Qian, Chien-Song Chyang,*, Jiun-Bin Chiou, and Jim Tso “Effect of Flue Gas Recirculation (FGR) on NOX Emission in a Pilot Scale Vortexing Fluidized Bed Combustor” Energy &; Fuels, 25(12), 5639-5646 (2011).
Jung, K. and R. D. LaNauze, “Particle Size and Density Changes During Fluidized Bed Combustion, ’’ Can. J. Chem. Eng., 61 (2), 262-264 (1983).
LaNauze, R. D.; “Coal Devolatilization in Fluidized-Bed Combustion, ” J. F. Davidson, R. Clift and D. Harrison, Eds., Academic Press, Ch.19, (1985).
Levenspiel, O., Chemical reaction engineering, 3rd ed. 1999, John Weilly &; Sons, Newyork.
Park D., T. J. Fitzgerald and O. Levenspiel; “Plume Model for Large Praticle Fluidized-Bed Combustors, ” Fuel, 60 (4), 295-306 (1981).
Park, D., O. Levenspiel and T. J. Fitzgerald; “A Comparison of the Plume Model with Currently Used Models for Atmospheric Fluidized Bed Combustion, ” Chem. Eng. Sci., 35, 295-301 (1980).
Pillai, K. K., “Burning Rates of Coal in Fluidized-Bed Combustion, ’’ Fuel, 60 (2), 163-164 (1981a).
Pillai, K. K., “The Influence of Coal Type on Devolatilization and Combustion in Fluidized Beds, ’’ J. Inst. Energy, 54 (420), 142-150 (1981b).
Qian, Fuping, Chien-Song Chyang, Chien-Hao Yeh, Jim Tso, “Characteristics of a Pilot Scale Vortexing Fluidized Bed Combustor with Flue Gas Recirculation I-Effect of Operating Conditions on the Combustion Behavior” Energy &; Fuels, 24 6257-6265(2010).
Rajan, R. R., R. Krishnan and C. Y. Wen, “Simulation of Fluidized Bed Combustion: Part II. Coal Devolatilization and Sulfur Oxides Retention, ’’ AIChE Symp. Ser., 74 (176), 112-125 (1978).
Saltelli, A. (Andrea), Chan, K. (Karen), Scott, E. M. (E. Marian), “Sensitivity analysis, ’’ John Wiley &; Sons Inc., Chichester ; New York : Wiley, c2000.
Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke (ASTM D3175 – 11). 網址:http://www.astm.org/Standards/D3175.htm。上網日期:2015-03-16。
Stubington, J. F. and J. F. Davidson, “Gas-Phase Combustion in Fluidized Beds, ’’ AIChE J., 27, 59-65 (1981).
Stubington, J. F., “The Role of Coal Volatiles in Fluidized Beds Combustion, ’’ J. Inst. Energy, 53 (417), 191-195 (1980).
Tillman, D. A.; “The Combustion of Solid Fuels Wastes, ” Academic Press. Inc., San Diego, California, 65-117 (1991).
Turnbull, E. and J. F. Davidson; “Fluidized Combustion of Char and Volatiles form Coal, ” AIChE J., 30 (6), 881-889 (1984).
Wen, C. and Y. Yu; “A Generalized Method for Predicting the Minimum Fluidization Velocity, ’’ AICHE Journal, 12, 610-612 (1966).
Yates, J. G. and P. R. Walker, “Particle Temperature in a Fluidized Bed Combustor” in Fluidization, ’’ J. F. Davidson &; D. L. Keairns, Eds., Cambridge University Press: London, 241-244 (1978).
Yates, J. G., M. MacGillivray and D. J. Cheesman, “Coal Devolatiliation in Fluidized-bed Combustors, ’’ Chem. Eng. Sci., 35, 2360-2361 (1980).
王國樑。1997。“渦旋式流體化床燃燒爐之性能測試” 中原大學化學工程研究所碩士論文。
王源杰。2013。“渦旋式流體化床燃燒爐中以煙氣迴流燃燒花生殼之研究” 中原大學化學工程研究所碩士論文。
生物質成型燃料燃燒特性。2013。網址:www.ftxny.com。上網日期:2015-03-16。
林士閔。2011。“玉米穗軸於渦旋式流體化床燃燒爐中燃燒之研究” 中原大學化學工程研究所碩士論文。
林建偉。2012。“渦旋式流體化床燃燒爐中以煙氣迴流燃燒稻殼之研究” 中原大學化學工程研究所碩士論文。
邱俊賓。2010。“流體化床燃燒爐中通入迴流煙氣或氮氣對氮氧化物排放之效應” 中原大學化學工程研究所碩士論文。
金曉鍾、呂俊復、喬悅、黎永、劉青、岳光溪、馮俊凱、林旭東、楊钯萍、郭長山、于龍、馬明華。1999。“循環床鍋爐燃燒份額分布的實驗研究和理論分析” 潔淨煤技術 5(1)。
科學日報。2006。網址:http://www.sciencedaily.com/terms/fossil_fuel.htm。上網日期:2015-03-09。
胡駿軒。2012。“渦旋式流體化床燃燒爐中以煙氣迴流燃燒木屑之研究” 中原大學化學工程研究所碩士論文。
殷祥峰。2014。“稻稈於流體化床燃燒中聚結之研究” 中原大學化學工程研究所碩士論文。
國際能源總署 (International Energy Agency, 2012, Key World Energy Statistics, IEA.)
張建春、馬素霞、武衛紅。2010。“循環流化床鍋爐不同負荷下燃燒份額的分布研究” 太原理工大學學報 41。
張彥芳、唐杰。2005。“城市汙泥流化床焚燒試驗研究” 上海環境科學 24(1)。
張繼臻、徐開峰、劉強、陳建利。2007。“燃煤循環流化床鍋爐燃燒控制及傳熱分析” 化肥工業 34(4)。
陳曉平、趙長遂、蘭計香、段鈺峰、勞小平、沈解忠、昊天偉。1998。“造紙汙泥流化床焚燒試驗研究” 污染防治技術。
陸惠林、秦裕琨。1984。“流化床鍋爐中的沸騰層燃燒份額” 哈爾濱工業大學學報 1。
葉千豪。2009。“流體化床燃燒爐中煙氣迴流對燃燒特性及氮氧化物排放效應之研究” 中原大學化學工程研究所碩士論文。
董志乾、郝如平、王東。2012。“燃煤粒度過大對循環流化床鍋爐的影響” 華北電力技術 (2)。
赫俏。2013。煤的燃燒技術與原理。第三版。化學工業出版社。
趙廣播、劉文鐵、黃怡珉、秦裕琨、李晗。1998。“樹皮在複合燃燒鍋爐流化床內的燃燒份額” 熱能動力工程 13(77)。
潘忠剛、仁愛峰、王達三、姜鴻安、宋渝吉。1988。“循環流化床上部空間燃燒份額和傳熱” 工程熱物理學報 9(1)。
錢建嵩。2000。“高揮發性物質於流體化床燃燒爐中之研究” 八十八年度石油暨石化產業科技學術合作研究計畫。
韓昭滄。1994。燃料及燃燒。第二版,272。冶金工業出版社。
羅煥星。1999。“農業副產品於渦旋式流體化床燃燒爐中之燃燒探討” 中原大學化學工程研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top