|
1.Tang, C.M. and P.A. Insel, GPCR expression in the heart; "new" receptors in myocytes and fibroblasts. Trends Cardiovasc Med, 2004. 14(3): p. 94-9. 2.Malbon, C.C., G proteins in development. Nat Rev Mol Cell Biol, 2005. 6(9): p. 689-701. 3.Siderovski, D.P. and F.S. Willard, The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci, 2005. 1(2): p. 51-66. 4.Kozasa, T., et al., Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci U S A, 1988. 85(7): p. 2081-5. 5.Mattera, R., et al., Splice variants of the alpha subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science, 1989. 243(4892): p. 804-7. 6.Weinstein, L.S. and A. Shenker, G protein mutations in human disease. Clin Biochem, 1993. 26(5): p. 333-8. 7.Wolfgang, W.J., et al., Signaling through Gs alpha is required for the growth and function of neuromuscular synapses in Drosophila. Dev Biol, 2004. 268(2): p. 295-311. 8.Shenker, A., et al., Severe endocrine and nonendocrine manifestations of the McCune-Albright syndrome associated with activating mutations of stimulatory G protein GS. J Pediatr, 1993. 123(4): p. 509-18. 9.Sunahara, R.K., C.W. Dessauer, and A.G. Gilman, Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol, 1996. 36: p. 461-80. 10.Exton, J.H., Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol, 1996. 36: p. 481-509. 11.Rhee, S.G., Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem, 2001. 70: p. 281-312. 12.Strathmann, M. and M.I. Simon, G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci U S A, 1990. 87(23): p. 9113-7. 13.Dhanasekaran, N. and J.M. Dermott, Signaling by the G12 class of G proteins. Cell Signal, 1996. 8(4): p. 235-45. 14.Taya, S., et al., Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol, 2001. 155(5): p. 809-20. 15.Hart, M.J., et al., Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science, 1998. 280(5372): p. 2112-4. 16.Fukuhara, S., H. Chikumi, and J.S. Gutkind, RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene, 2001. 20(13): p. 1661-8. 17.Ross, E.M. and T.M. Wilkie, GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem, 2000. 69: p. 795-827. 18.Dohlman, H.G., et al., Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol Cell Biol, 1996. 16(9): p. 5194-209. 19.Yu, J.H., J. Wieser, and T.H. Adams, The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. Embo J, 1996. 15(19): p. 5184-90. 20.Koelle, M.R. and H.R. Horvitz, EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell, 1996. 84(1): p. 115-25. 21.Mao, H., et al., RGS17/RGSZ2, a novel regulator of Gi/o, Gz, and Gq signaling. J Biol Chem, 2004. 279(25): p. 26314-22. 22.Riddle, E.L., et al., Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res, 2005. 96(4): p. 401-11. 23.Snow, B.E., et al., A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gbeta5 subunits. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13307-12. 24.Watson, A.J., et al., A novel form of the G protein beta subunit Gbeta5 is specifically expressed in the vertebrate retina. J Biol Chem, 1996. 271(45): p. 28154-60. 25.Betty, M., et al., Distribution of heterotrimeric G-protein beta and gamma subunits in the rat brain. Neuroscience, 1998. 85(2): p. 475-86. 26.Zhang, J.H., et al., Nuclear localization of G protein beta 5 and regulator of G protein signaling 7 in neurons and brain. J Biol Chem, 2001. 276(13): p. 10284-9. 27.Amador-Cano, G., E. Carpizo-Ituarte, and D. Cristino-Jorge, Role of protein kinase C, G-protein coupled receptors, and calcium flux during metamorphosis of the sea urchin Strongylocentrotus purpuratus. Biol Bull, 2006. 210(2): p. 121-31. 28.Hooks, S.B. and T.K. Harden, Purification and in vitro functional analysis of R7 subfamily RGS proteins in complex with Gbeta5. Methods Enzymol, 2004. 390: p. 163-77. 29.Martemyanov, K.A., et al., The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo. J Neurosci, 2003. 23(32): p. 10175-81. 30.Gold, S.J., et al., Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J Neurosci, 1997. 17(20): p. 8024-37. 31.Zhang, J.H., Z. Lai, and W.F. Simonds, Differential expression of the G protein beta(5) gene: analysis of mouse brain, peripheral tissues, and cultured cell lines. J Neurochem, 2000. 75(1): p. 393-403. 32.Witherow, D.S., et al., G beta 5.RGS7 inhibits G alpha q-mediated signaling via a direct protein-protein interaction. J Biol Chem, 2003. 278(23): p. 21307-13. 33.Larminie, C., et al., Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res Mol Brain Res, 2004. 122(1): p. 24-34. 34.Hunt, R.A., et al., Snapin interacts with the N-terminus of regulator of G protein signaling 7. Biochem Biophys Res Commun, 2003. 303(2): p. 594-9. 35.Chou, J.L., et al., Regulation of type VI adenylyl cyclase by Snapin, a SNAP25-binding protein. J Biol Chem, 2004. 279(44): p. 46271-9. 36.Traver, S., et al., The RGS (regulator of G-protein signalling) and GoLoco domains of RGS14 co-operate to regulate Gi-mediated signalling. Biochem J, 2004. 379(Pt 3): p. 627-32. 37.Dowal, L., et al., Determination of the contact energies between a regulator of G protein signaling and G protein subunits and phospholipase C beta 1. Biochemistry, 2001. 40(2): p. 414-21. 38.Ishii, M., et al., Phosphatidylinositol 3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action. Biochem J, 2005. 385(Pt 1): p. 65-73. 39.Heximer, S.P., et al., G protein selectivity is a determinant of RGS2 function. J Biol Chem, 1999. 274(48): p. 34253-9. 40.Heximer, S.P., et al., RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14389-93. 41.Grant, S.L., et al., Specific regulation of RGS2 messenger RNA by angiotensin II in cultured vascular smooth muscle cells. Mol Pharmacol, 2000. 57(3): p. 460-7. 42.Heximer, S.P., et al., Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest, 2003. 111(8): p. 1259. 43.Tang, K.M., et al., Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med, 2003. 9(12): p. 1506-12. 44.Popov, S.G., et al., Ca2+/Calmodulin reverses phosphatidylinositol 3,4, 5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. J Biol Chem, 2000. 275(25): p. 18962-8. 45.Ishii, M., A. Inanobe, and Y. Kurachi, PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel. Proc Natl Acad Sci U S A, 2002. 99(7): p. 4325-30. 46.Logothetis, D.E., et al., The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature, 1987. 325(6102): p. 321-6. 47.Rogers, J.H., et al., RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest, 1999. 104(5): p. 567-76. 48.Witherow, D.S., et al., Complexes of the G protein subunit gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. J Biol Chem, 2000. 275(32): p. 24872-80. 49.Kovoor, A., et al., Co-expression of Gbeta5 enhances the function of two Ggamma subunit-like domain-containing regulators of G protein signaling proteins. J Biol Chem, 2000. 275(5): p. 3397-402. 50.Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Dev Dyn, 1995. 203(3): p. 253-310. 51.Wells, J.M. and D.A. Melton, Vertebrate endoderm development. Annu Rev Cell Dev Biol, 1999. 15: p. 393-410. 52.Ikegami, R., P. Hunter, and T.D. Yager, Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol, 1999. 209(2): p. 409-33. 53.Inohara, N. and G. Nunez, Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death Differ, 2000. 7(5): p. 509-10. 54.Biben, C. and R.P. Harvey, Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev, 1997. 11(11): p. 1357-69. 55.Ingi, T. and Y. Aoki, Expression of RGS2, RGS4 and RGS7 in the developing postnatal brain. Eur J Neurosci, 2002. 15(5): p. 929-36. 56.Lopez-Fando, A., et al., Expression of neural RGS-R7 and Gbeta5 Proteins in Response to Acute and Chronic Morphine. Neuropsychopharmacology, 2005. 30(1): p. 99-110. 57.Doupnik, C.A., et al., RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10461-6. 58.Zhou, J.Y., D.P. Siderovski, and R.J. Miller, Selective regulation of N-type Ca channels by different combinations of G-protein beta/gamma subunits and RGS proteins. J Neurosci, 2000. 20(19): p. 7143-8. 59.Sondek, J. and D.P. Siderovski, Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding. Biochem Pharmacol, 2001. 61(11): p. 1329-37. 60.Stainier, D.Y. and M.C. Fishman, Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol, 1992. 153(1): p. 91-101. 61.Stainier, D.Y., R.K. Lee, and M.C. Fishman, Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development, 1993. 119(1): p. 31-40. 62.Baker, K., et al., Defective "pacemaker" current (Ih) in a zebrafish mutant with a slow heart rate. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4554-9.
|