跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建豪
研究生(外文):Chien-Hao
論文名稱:斑馬魚之RGS7基因選殖表現模式及參與心臟的發育
論文名稱(外文):Zebrafish regulator of G protein signal 7(RGS7):temperal pattern and involved in cardiac development
指導教授:許立松
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:79
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前已知G蛋白信號調節因子(RGS)能夠直接與活化態的Gα結合,並刺激Gα次單元上的GTP酶的活性,加速GTP的被水解,可讓Gα蛋白變成不活化態。RGS蛋白依其結構與功能的不同可以區分為RGS1~RGS15家族,它們都具有一個120個胺基酸的保留結構區域,其功能主要是和活化態的Gα結合,負調節G蛋白的信號傳遞。許多RGS蛋白還具有其他的非RGS的結構區域,主要是能夠與其它的信號蛋白結合,來幫助調節G蛋白的信號傳遞過程。本論文主要探討斑馬魚的RGS7基因在不同的斑馬魚胚胎時期中是否有表現,及會表現在哪些組織部位;並且藉由注射專一性的反義寡核酸將斑馬魚胚胎RGS7基因剔除,觀察胚胎發育的影響。因此,利用RT-PCR以及全胚體原位雜合技術,結果發現在受精後0~96小時的斑馬魚胚胎中皆可偵測到RGS7的表現,其表現的位置是在斑馬魚胚胎的腦部、腹側主動脈、中期細胞團及體節等組織部位。再以顯微注射的技術將斑馬魚RGS7剔除,發現會干擾斑馬魚胚胎正常的心臟發育過程,影響心臟功能。結果顯示RGS7剔除後會使斑馬魚的心臟跳動微弱化、心包腔膨大以及心臟管狀化等現象。本研究證實RGS7蛋白於斑馬魚之早期心臟發育中扮演極重要之角色。
To date, it is well accepted that Regulator of G-protein signalling(RGS) proteins terminate signalling by accelerating the intrinsic G alpha-GTPase activity and recycling the G-protein complex back to its inactive GDP-bound heterotrimeric configuration. The RGS protein can be divided into 15 subfamilies(RGS1~RGS15) in accordance with the structure and the biological function. The RGS domain, a conserved 120-aa region exists in all RGS proteins, functions as a negative regulator through interacting with activated Gα subunit and turn off the signaling. In addition, RGS proteins contain other domains that can associate with other protein to enhance the G-protein signaling. In this study, we attempted to investigat the expression pattern and function of RGS7 in zebrafish during development. Using RT-PCR analysis, RGS7 was expressed from fertilization to 96 hours post-fertilization of Zebrafish. Expression of RGS7 was found in brain、aorta ventralis、intermediate cell mass and somite by whole-mount in situ hybridization. Microinjection of RGS7-specific antisense morpholino oligonucleotide into fertilized zebrafish embryos leaded to interfere normal heart development and the heart function. Phenotype such as weakness of heart beat, swollen pericardial cavity and abnormal heart tube formation was found in morphants. Taken together, there results suggest that RGS7 protein plays an important role in the early development of the zebrafish heart.
壹、 中英文摘要...................................1
貳、 縮寫檢索表...................................4
參、 序論.........................................5
肆、 研究動機....................................16
伍、 實驗方法與材料..............................17
陸、 實驗結果....................................39
柒、 討論........................................48
捌、 參考文獻....................................54
玖、 圖表與圖表說明..............................59
1.Tang, C.M. and P.A. Insel, GPCR expression in the heart; "new" receptors in myocytes and fibroblasts. Trends Cardiovasc Med, 2004. 14(3): p. 94-9.
2.Malbon, C.C., G proteins in development. Nat Rev Mol Cell Biol, 2005. 6(9): p. 689-701.
3.Siderovski, D.P. and F.S. Willard, The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci, 2005. 1(2): p. 51-66.
4.Kozasa, T., et al., Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci U S A, 1988. 85(7): p. 2081-5.
5.Mattera, R., et al., Splice variants of the alpha subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science, 1989. 243(4892): p. 804-7.
6.Weinstein, L.S. and A. Shenker, G protein mutations in human disease. Clin Biochem, 1993. 26(5): p. 333-8.
7.Wolfgang, W.J., et al., Signaling through Gs alpha is required for the growth and function of neuromuscular synapses in Drosophila. Dev Biol, 2004. 268(2): p. 295-311.
8.Shenker, A., et al., Severe endocrine and nonendocrine manifestations of the McCune-Albright syndrome associated with activating mutations of stimulatory G protein GS. J Pediatr, 1993. 123(4): p. 509-18.
9.Sunahara, R.K., C.W. Dessauer, and A.G. Gilman, Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol, 1996. 36: p. 461-80.
10.Exton, J.H., Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol, 1996. 36: p. 481-509.
11.Rhee, S.G., Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem, 2001. 70: p. 281-312.
12.Strathmann, M. and M.I. Simon, G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci U S A, 1990. 87(23): p. 9113-7.
13.Dhanasekaran, N. and J.M. Dermott, Signaling by the G12 class of G proteins. Cell Signal, 1996. 8(4): p. 235-45.
14.Taya, S., et al., Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol, 2001. 155(5): p. 809-20.
15.Hart, M.J., et al., Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science, 1998. 280(5372): p. 2112-4.
16.Fukuhara, S., H. Chikumi, and J.S. Gutkind, RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene, 2001. 20(13): p. 1661-8.
17.Ross, E.M. and T.M. Wilkie, GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem, 2000. 69: p. 795-827.
18.Dohlman, H.G., et al., Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol Cell Biol, 1996. 16(9): p. 5194-209.
19.Yu, J.H., J. Wieser, and T.H. Adams, The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. Embo J, 1996. 15(19): p. 5184-90.
20.Koelle, M.R. and H.R. Horvitz, EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell, 1996. 84(1): p. 115-25.
21.Mao, H., et al., RGS17/RGSZ2, a novel regulator of Gi/o, Gz, and Gq signaling. J Biol Chem, 2004. 279(25): p. 26314-22.
22.Riddle, E.L., et al., Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res, 2005. 96(4): p. 401-11.
23.Snow, B.E., et al., A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gbeta5 subunits. Proc Natl Acad Sci U S A, 1998. 95(22): p. 13307-12.
24.Watson, A.J., et al., A novel form of the G protein beta subunit Gbeta5 is specifically expressed in the vertebrate retina. J Biol Chem, 1996. 271(45): p. 28154-60.
25.Betty, M., et al., Distribution of heterotrimeric G-protein beta and gamma subunits in the rat brain. Neuroscience, 1998. 85(2): p. 475-86.
26.Zhang, J.H., et al., Nuclear localization of G protein beta 5 and regulator of G protein signaling 7 in neurons and brain. J Biol Chem, 2001. 276(13): p. 10284-9.
27.Amador-Cano, G., E. Carpizo-Ituarte, and D. Cristino-Jorge, Role of protein kinase C, G-protein coupled receptors, and calcium flux during metamorphosis of the sea urchin Strongylocentrotus purpuratus. Biol Bull, 2006. 210(2): p. 121-31.
28.Hooks, S.B. and T.K. Harden, Purification and in vitro functional analysis of R7 subfamily RGS proteins in complex with Gbeta5. Methods Enzymol, 2004. 390: p. 163-77.
29.Martemyanov, K.A., et al., The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo. J Neurosci, 2003. 23(32): p. 10175-81.
30.Gold, S.J., et al., Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J Neurosci, 1997. 17(20): p. 8024-37.
31.Zhang, J.H., Z. Lai, and W.F. Simonds, Differential expression of the G protein beta(5) gene: analysis of mouse brain, peripheral tissues, and cultured cell lines. J Neurochem, 2000. 75(1): p. 393-403.
32.Witherow, D.S., et al., G beta 5.RGS7 inhibits G alpha q-mediated signaling via a direct protein-protein interaction. J Biol Chem, 2003. 278(23): p. 21307-13.
33.Larminie, C., et al., Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res Mol Brain Res, 2004. 122(1): p. 24-34.
34.Hunt, R.A., et al., Snapin interacts with the N-terminus of regulator of G protein signaling 7. Biochem Biophys Res Commun, 2003. 303(2): p. 594-9.
35.Chou, J.L., et al., Regulation of type VI adenylyl cyclase by Snapin, a SNAP25-binding protein. J Biol Chem, 2004. 279(44): p. 46271-9.
36.Traver, S., et al., The RGS (regulator of G-protein signalling) and GoLoco domains of RGS14 co-operate to regulate Gi-mediated signalling. Biochem J, 2004. 379(Pt 3): p. 627-32.
37.Dowal, L., et al., Determination of the contact energies between a regulator of G protein signaling and G protein subunits and phospholipase C beta 1. Biochemistry, 2001. 40(2): p. 414-21.
38.Ishii, M., et al., Phosphatidylinositol 3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action. Biochem J, 2005. 385(Pt 1): p. 65-73.
39.Heximer, S.P., et al., G protein selectivity is a determinant of RGS2 function. J Biol Chem, 1999. 274(48): p. 34253-9.
40.Heximer, S.P., et al., RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14389-93.
41.Grant, S.L., et al., Specific regulation of RGS2 messenger RNA by angiotensin II in cultured vascular smooth muscle cells. Mol Pharmacol, 2000. 57(3): p. 460-7.
42.Heximer, S.P., et al., Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest, 2003. 111(8): p. 1259.
43.Tang, K.M., et al., Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med, 2003. 9(12): p. 1506-12.
44.Popov, S.G., et al., Ca2+/Calmodulin reverses phosphatidylinositol 3,4, 5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. J Biol Chem, 2000. 275(25): p. 18962-8.
45.Ishii, M., A. Inanobe, and Y. Kurachi, PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel. Proc Natl Acad Sci U S A, 2002. 99(7): p. 4325-30.
46.Logothetis, D.E., et al., The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature, 1987. 325(6102): p. 321-6.
47.Rogers, J.H., et al., RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest, 1999. 104(5): p. 567-76.
48.Witherow, D.S., et al., Complexes of the G protein subunit gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. J Biol Chem, 2000. 275(32): p. 24872-80.
49.Kovoor, A., et al., Co-expression of Gbeta5 enhances the function of two Ggamma subunit-like domain-containing regulators of G protein signaling proteins. J Biol Chem, 2000. 275(5): p. 3397-402.
50.Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Dev Dyn, 1995. 203(3): p. 253-310.
51.Wells, J.M. and D.A. Melton, Vertebrate endoderm development. Annu Rev Cell Dev Biol, 1999. 15: p. 393-410.
52.Ikegami, R., P. Hunter, and T.D. Yager, Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol, 1999. 209(2): p. 409-33.
53.Inohara, N. and G. Nunez, Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death Differ, 2000. 7(5): p. 509-10.
54.Biben, C. and R.P. Harvey, Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev, 1997. 11(11): p. 1357-69.
55.Ingi, T. and Y. Aoki, Expression of RGS2, RGS4 and RGS7 in the developing postnatal brain. Eur J Neurosci, 2002. 15(5): p. 929-36.
56.Lopez-Fando, A., et al., Expression of neural RGS-R7 and Gbeta5 Proteins in Response to Acute and Chronic Morphine. Neuropsychopharmacology, 2005. 30(1): p. 99-110.
57.Doupnik, C.A., et al., RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10461-6.
58.Zhou, J.Y., D.P. Siderovski, and R.J. Miller, Selective regulation of N-type Ca channels by different combinations of G-protein beta/gamma subunits and RGS proteins. J Neurosci, 2000. 20(19): p. 7143-8.
59.Sondek, J. and D.P. Siderovski, Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding. Biochem Pharmacol, 2001. 61(11): p. 1329-37.
60.Stainier, D.Y. and M.C. Fishman, Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol, 1992. 153(1): p. 91-101.
61.Stainier, D.Y., R.K. Lee, and M.C. Fishman, Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development, 1993. 119(1): p. 31-40.
62.Baker, K., et al., Defective "pacemaker" current (Ih) in a zebrafish mutant with a slow heart rate. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4554-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文