跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗翰
研究生(外文):Tsung-Han Lin
論文名稱:適用於邊界偵測之低耗電室內定位系統
論文名稱(外文):Energy-Efficient Boundary Detection for RF-Based Indoor Localization Systems
指導教授:黃寶儀黃寶儀引用關係
指導教授(外文):Polly Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:40
中文關鍵詞:室內定位電源效率移動狀況
外文關鍵詞:Indoor localizationEnergy efficiencyMobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
邊界偵測是一種用於偵測追蹤目標是否進入重要區域的位置感知服務。定位時運用較低的位置更新速度,通常可降低系統耗電量,但同時也犧牲了偵測事件的即時性及準確度。在此篇論文中,我們提出根據目標移動狀況,而動態調整定位更新速度的機制,以降低系統耗電量並維持系統偵測的準確度。在模擬測試及在實體測試平台的結果均顯示我們所提出之機制在不影響系統準確度的前提下,可有效減少系統耗電量。值得一提的是,運用實際量測的定位誤差的測試結果,更顯示系統耗電量可有效減少20%。
Boundary detection is a form of location-aware services that aims at detecting targets crossing certain critical regions. Typically, a lower location sampling rate contributes to a lower level of energy consumption but, in the meantime, delays the detection of boundary crossing events. Opting to enable energy-efficient boundary detection services, we propose a mobility-aware mechanism that adapts the location sampling rate to the target mobility. Results from our simulations and live experiments confirm that the proposed adaptive sampling mechanism is effective. In particular, when experimented with realistic errors measured from a live RF-based localization system, the energy consumption can be reduced significantly to 20%.
誌謝 ii
摘要 iii
Abstract iv
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Mobility-Aware Sampling Mechanism 5
2.1 Basic Scheme . . . . . . . . . . . . . . . . . 6
2.2 Extended Scheme . . . . . . . . . . . . . . . .7
Chapter 3 Simulation 9
3.1 Simulation Settings . . . . . . . . . . . . . 10
3.2 Performance Metrics . . . . . . . . . . . . . 11
3.3 Results without Localization Error . . . . . .12
3.4 Results with Localization Error . . . . . . . 14
3.5 Gain of Mobility-Aware Sampling . . . . . . . 16
3.6 Impact of Mobility . . . . . . . . . . . . . .18
3.7 Impact of Boundary Crossing Rate . . . . . . .21
Chapter 4 Implementation 24
4.1 System Implementation . . . . . . . . . . . . 24
4.2 Experimental Settings . . . . . . . . . . . . 26
4.3 Experimental Results . . . . . . . . . . . . .27
Chapter 5 Related Work 30
5.1 Mobility-Aware Communication Systems . . . . .30
5.2 Adaptive Sampling . . . . . . . . . . . . . . 32
5.3 Location Estimation Techniques . . . . . . . .33
5.4 Energy-Efficient Designs . . . . . . . . . . .34
Chapter 6 Conclusion and Future Work 36
Bibliography 37
List of Figures
1.1 System Architecture 3
2.1 Illustration of Mobility-Aware Sampling 6
3.1 Results Without Localization Error 13
3.2 Results With Localization Error 15
3.3 Comparison of No-Error and RF-Error Case 17
3.4 Reduction of Location Sampling Rate 18
3.5 Impact of Mobility on Sampling Rate 19
3.6 Impact of Mobility on Detection Accuracy 19
3.7 Impact of Boundary Crossing Rate on Sampling Rate 23
3.8 Impact of Boundary Crossing Rate on Detection Accuracy 23
4.1 Localization System 25
4.2 Results from Real Localization Systems 29
List of Tables
4.1 Scenario Representation of Mobility 27
4.2 CC2420 Radio and ADXL202JE Accelerometer Power Consumption 29
[1] Chipcon: CC2420 802.15.4 compliant radio. http://www.chipcon.com.
[2] ADXL202 datasheet. http://www.analog.com/, October 2000.
[3] ADXL330 datasheet. http://www.analog.com/, September 2006.
[4] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user location and tracking
system. In INFOCOM, pages 775–784, 2000.
[5] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward. A distance routing effect
algorithm for mobility (dream). In MOBICOM, pages 76–84, 1998.
[6] M. A. Batalin, M. H. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme, W. J. Kaiser, M.
M. Hansen, G. J. Pottie, M. B. Srivastava, and D. Estrin. Call and response: experiments
in sampling the environment. In SenSys, pages 25–38, 2004.
[7] A. Bhattacharya and S. K. Das. Lezi-update: an information-theoretic framework for
personal mobility tracking in pcs networks. Wirel. Netw., 8(2/3):121–135, 2002.
[8] L. Breslau, D. Estrin, K. R. Fall, S. Floyd, J. S. Heidemann, A. Helmy, P. Huang, S.
McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in network simulation. IEEE
Computer, 33(5):59–67, 2000.
[9] Z. J. Butler, P. I. Corke, R. A. Peterson, and D. Rus. Virtual fences for controlling cows.
In ICRA, pages 4429–4436, 2004.
[10] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design. Kluwer
Academic Publisher, 1995.
[11] L. Cong andW. Zhuang. Hybrid tdoa/aoa mobile user location for wideband cdma cellular
systems. Wireless Communications, IEEE Transactions on, 1(3):439–447, Jul 2002.
[12] G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr. Dynamic real-time deformations
using space & time adaptive sampling. In SIGGRAPH, pages 31–36, 2001.
[13] L. M. Feeney. An energy consumption model for performance analysis of routing protocols
for mobile ad hoc networks. Mob. Netw. Appl., 6(3):239–249, 2001.
[14] R. Harle and A. Hopper. The potential for location-aware power management. In Ubicomp,
2008.
[15] M. Hazas, J. Scott, and J. Krumm. Location-aware computing comes of age. IEEE
Computer, 37(2):95–97, 2004.
[16] J. Hightower and G. Borriello. Particle filters for location estimation in ubiquitous computing:
A case study. In Ubicomp, pages 88–106, 2004.
[17] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks. Mobile
Computing, 353:153–181, 1996.
[18] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.-C. Chen. A survey of energy efficient
network protocols for wireless networks. Wireless Networks, 7(4):343–358, 2001.
[19] M. B. Kjærgaard, G. Treu, and C. Linnhoff-Popien. Zone-based RSS reporting for location
fingerprinting. In Pervasive, pages 316–333, 2007.
[20] S.-W. Lee and K. Mase. Incremental motion-based location recognition. In ISWC, pages
123–, 2001.
[21] K. Lorincz and M. Welsh. MoteTrack: a robust, decentralized approach to RF-based
location tracking. Personal Ubiquitous Comput., 11(6):489–503, 2007.
[22] D. Madigan, E. Einahrawy, R. P. Martin, W.-H. Ju, P. Krishnan, and A. S. Krishnakumar.
Bayesian indoor positioning systems. In INFOCOM, pages 1217–1227, 2005.
[23] D. Niculescu. Positioning in ad hoc sensor networks. IEEE Network, 18(4):24–29, 2004.
[24] N. Patwari, I. Hero, A.O., M. Perkins, N. Correal, and R. O’Dea. Relative location estimation
in wireless sensor networks. Signal Processing, IEEE Transactions on [see also
Acoustics, Speech, and Signal Processing, IEEE Transactions on], 51(8):2137–2148,
Aug. 2003.
[25] J. Polastre, R. Szewczyk, and D. E. Culler. Telos: enabling ultra-low power wireless
research. In IPSN, pages 364–369, 2005.
[26] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support
system. In MOBICOM, pages 32–43, 2000.
[27] V. Raghunathan, S. Ganeriwal, and M. Srivastava. Emerging techniques for long lived
wireless sensor networks. Communications Magazine, IEEE, 44(4):108–114, 2006.
[28] N. Ravi, P. Shankar, A. Frankel, A. Elgammal, and L. Iftode. Indoor localization using
camera phones. In WMCSA ’06: Proceedings of the Seventh IEEE Workshop on Mobile
Computing Systems & Applications: Supplement, pages 1–7, Washington, DC, USA,
2006. IEEE Computer Society.
[29] S. Singh and C. S. Raghavendra. Pamas—power aware multi-access protocol with signalling
for ad hoc networks. SIGCOMM Comput. Commun. Rev., 28(3):5–26, 1998.
[30] K. M. Sivalingam, J.-C. Chen, P. Agrawal, and M. B. Srivastava. Design and analysis of
low-power access protocols for wireless and mobile atm networks. Wirel. Netw., 6(1):73–
87, 2000.
[31] G. Wan and E. C. Lin. A dynamic paging scheme for wireless communication systems.
In MOBICOM, pages 195–203, 1997.
[32] Y. Xu, J. Winter, and W.-C. Lee. Prediction-based strategies for energy saving in object
tracking sensor networks. In Mobile Data Management(MDM), pages 346–357, 2004.
[33] K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan. Ecolocation: a sequence
based technique for rf localization in wireless sensor networks. In IPSN, pages 285–292,
2005.
[34] S.-Y. Yeh, K.-H. Chang, C.-I. Wu, H.-H. Chu, and J. Y.-J. Hsu. Geta sandals: a footstep
location tracking system. Personal Ubiquitous Comput., 11(6):451–463, 2007.
[35] M. Youssef and A. K. Agrawala. Handling samples correlation in the horus system. In
INFOCOM, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top