跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉志文
研究生(外文):Liu Chih-Wen
論文名稱:連續式生化反應器之控制
論文名稱(外文):Control of continuous bioreactor
指導教授:錢義隆
指導教授(外文):Chien I-Lung
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:171
中文關鍵詞:發酵程序連續式製程最適化操作非線性控制產出率
外文關鍵詞:fermentation processcontinuous processoptimal operationnonlinear controlproductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,發酵程序之控制是相當值得研究與探討的領域。發酵為一種生物轉化程序,若以化學變化之觀點視之,則此種轉化行為的催化劑即為微生物,而進一步由微生物將養份轉化生產出產品。
在生產方面以連續式製程,改善發酵程序的產率(Productivity)為實際工業上之重要課題。大部分連續式系統而言,產出率的考量不外乎產品或是菌種,而過去許多研究大多為考慮菌種產率最大做為最適目標。對產品產率做直接控制亦為可行,但也僅止於單一輸入單一狀態輸出的控制架構,由此操作則僅在於次最適化的操作,實質上而非操作於全域最適化操作點上,因此引發了對於使產出率最適化操作的研究動機,本論文將比較幾種控制方式討論對於最適化操作之影響。
In recent years, fermenter control has been an active area of research and has attracted considerable interest. The fermentation is a kind of biochemical process. If we regard it as a viewpoint of the chemical reaction, then this kind of behavior of microorganism is like a catalyst in chemical reactions, and the microorganism transforms the substrate into products.
Improving the productivity of a fermentation process has long been an important industrial practice. For most of continuous systems, the considerations of productivity are products or biomass. Many studies have been made on improving the steady-state product productivity for continuous fermentation process. The control of productivity is also feasible, but it is only single-input single-output control structure. In fact, the single-input single-output structure is operating on the non-optimal conditions. Therefore, this initiated the research motive in optimal productivity. This study will compare several kind of control modes and discuss the influence of optimal operation.
中文摘要...............................................................................................................I
Abstract................................................................................................................II
誌謝.....................................................................................................................III
目錄....................................................................................................................IV
圖目錄................................................................................................................VI
表目錄................................................................................................................IX
第一章 緒論..........................................................................................................1
1-1 前言................................................................................................................1
1-2 文獻回顧........................................................................................................2
1-3 研究動機與目的............................................................................................4
1-4 組織章節........................................................................................................4
第二章 連續式生化反應器介紹......................................................................... 6
2-1 前言...............................................................................................................6
2-2 連續式生化反應器之數學模式...................................................................6
2-2-1 雙成份系統………………………………………………………….6
2-2-2 三成份系統………………………………………………………….9
2-3 穩態與最適化分析……………………………………………………….10
2-3-1 雙成份系統………………………………………………………...10
2-3-2 三成份系統………………………………………………………...13
2-4 控制變數與作動變數…………………………………………………….17
第三章 控制器設計……………………………………………………………36
3-1 前言……………………………………………………………………….36
3-2 非線性控制器設計……………………………………………………….36
3-2-1 輸入輸出線性化…………………………………………………..36
3-2-2 非線性內部模式控制…………………………………………..…42
3-3 線性控制器設計……………………………………………………….…44
3-4 單環路控制與應用……………………………………………………….45
3-4-1 雙成份系統控制…………………………………………………..45
3-4-1-1 稀釋速率控制細胞濃度……………………………………46
3-4-1-2 稀釋速率控制基質濃度……………………………………47
3-4-1-3 模擬結果……………………………………………………48
3-4-2 三成份系統控制………………………………………………...…50
3-4-2-1 稀釋速率控制細胞濃度……………………………………50
3-4-2-2 稀釋速率控制基質濃度……………………………………52
3-4-2-3 稀釋速率控制產物濃度……………………………………53
3-4-2-4 進料基質濃度控制基質濃度……………………………....55
3-4-2-5 模擬結果……………………………………………………57
3-5 雙環路控制與應用……………………………………………………….61
3-5-1 前言……………………………………………………………..61
3-5-2 控制配對選擇……………………………………………………61
3-5-3 模擬結果……………………………………………………..65
3-6 總結……………………………………………………………………….67
第四章 結論與展望………………………………………………………….159
4-1 結論……………………………………………………………………...159
4-2 展望……………………………………………………………………..160
符號說明……………………………………………………………………..161
參考文獻..........................................................................................................163
附錄1 ..............................................................................................................168
附錄2 ..............................................................................................................170
[1] Agrawal, P., Koshy, G. and Ramseier, M., “An algorithm for operation a fed-batch fermentor at optimum specific-growth rate,” Biotechnol. Bioengng., 33, 115-125, (1989).
[2] Boskovic, J. D., “Stable adaptive control of a class of first-order nonlinearly parameterized plants,” IEEE Transactions on Automatic Control, 40, 2, 347-350, (1995).
[3] B. Wayne Bequette, “Process Dynamics Modeling, Analysis, and Simulation,” Prentice Hall, Upper Saddle River, N. J. (1998).
[4] Enfors, S. O., Hendenberg, J. and Olsson, K., “Simulation of the dynamics in the baker’ yeast process,” Bioprocess Engng., 5, 191-198, (1990).
[5] Golden, M. P. and Ydstie, B. E., “Adaptive extremum control using approximate process models,” AIChE. J., 35, 1157-1169, (1989).
[6] Guay M. and Zhang T., “Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainties — Brief Paper,” Automatica, 39, 1283-1293, (2003).
[7] Guay M., Dochain D., and Perrier M., “Adaptive extremum seeking control of continuous stirred tank bioreactors with unknown growth kinetics,” Automatica, 40, 881-888, (2004).
[8] Henson M. A. and Seborg D. E., “Nonlinear control strategies for continuous fermentors,” Proc. Amer. Control. Conf., San Diego, 2723, (1990a).
[9] Henson M. A.and Seborg D. E., “Input-output linearization of general nonlinear processes,” AIChE. J., 36, 1753-1757, (1990).
[10] Henson M. A. and Seborg D. E., “A critique of exact linearization strategies for process control,” J. of Process Control, (1991).
[11] Henson M. A. and Seborg D. E., “An internal model control strategy for nonlinear systems,” AIChE. J., 37, 1065-1081, (1992a).
[12] Henson M. A. and Seborg D. E., “Nonlinear control strategies for continuous fermentors,” Chem. Engng. Sci., 47, 821-835, (1992b).
[13] Henson M. A.and Seborg D. E., “Nonlinear Process Control,” Prentice Hall, Upper Saddle River, N. J. (1997).
[14] Isidori, A., “Nonlinear Control System,” Springer-Verlag, New York, (1989).
[15] K. Kishore Kumar and Sachin C. Patwardhan, “Nonlinear predictive control of systems exhibiting input multiplicities using the multimodel approach,” Ind. Eng. Chem. Res., 41, 3186-3198, (2002).
[16] Kravaris, C. and Chung, C., “Geometric methods for nonlinear process control I. background.,” Ind. Eng. Chem. Res., 29, 2295-2310, (1990a).
[17] Kravaris, C. and Kantor, J. C., “Geometric methods for nonlinear process control II. controller synthesis.,” Ind. Eng. Chem. Res., 29, 2310-2323, (1990b).
[18] K. Schugerl and K. H. Bellgardt, “Bioreaction Engineering: Modeling and Control,” Springer-Verlag, (2000).
[19] Kuhlmann, C., Bogle, D., and Chalabi, Z., “On the controllability of continuous fermentation processes.,” Bioprocess Engineering, 17, 367-374, (1997).
[20] Lee, P. L., and G. R. Sullivan, “Generic model control (GMC),” Computers and Chemical Engineering, 12, 573-580, (1988).
[21] Morari, M., and Zafiriou, E., “Robust Process Control,” Prentice Hall, Englewood Cliffs, N. J., (1988).
[22] Munack, A. and Thomas, M., “Application of modern control for biotechnological process,” IEE Proc. Part D, 133, 194-198, (1986).
[23] Nguang, S. K., and Chen, X. D., “Simple substrate feeding rate control mechanism for optimizing the steady state productivity of a class of fermentation processes,” Biotechnology Progress, 13, 200-204, (1997).
[24] Nguang, S. K., and Chen, X. D., “Simple procedure for operating a class of continuous fermentation processes at the optimal steady state productivity,” Biochemical Engineering Journal, 1, 131-136, (1998).
[25] Nguang, S. K., and Chen, X. D., “Robust H∞ control of a class of continuous fermentation processes,” Applied Mathematics Letters, 12, 6, 61-69, (1999).
[26] Nguang, S. K., and Chen, X. D., “Control of continuous fermentors under constraints,” International Journal of Systems Science, 32, 3, 313-320, (2001).
[27] Marcos N. I., Guay M., Dochain D., Zhang T., “Adaptive extremum-seeking control of a continuous stirred tank bioreactor with Haldane’s Kinetics,” Journal of Process Control, 14, 317-328, (2004).
[28] Slotine, J. and Li, W. “Applied Nonlinear Control,” Prentice Hall, Englewood Cliffs, N. J., (1991).
[29] Stoyanov, S. and Simeonov, I., “Robust compensator control of continuous fermentation processes,” Bioprocess Engineering, 15, 6, 295, (1996).
[30] Szederkenyi, G., Kristensen, N. R., Hangos, K. M., and jorgensoen, S. B., “Nonlinear Analysis and Control of a Continuous Fermentation Process,” Computers and Chemical Engineering, 26, 659-670, (2002).
[31] Zhang T., Guay M., and Dochain D., “Adaptive Extremum Seeking Control of Continuous Stirred-Tank Bioreactors,” AIChE. J., 49, 1, 113-123, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top