跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/02 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:武黃山
研究生(外文):Hong-Son Vu
論文名稱:內耳式耳機所需之高效能/低功耗/寬頻帶 主動抗噪晶片設計
論文名稱(外文):Broad-Bandwidth Active Noise Cancellation Integrated Circuit Design Exploration Targeting at High-Performance/Low-Power for In-ear Headphones
指導教授:陳冠宏陳冠宏引用關係
指導教授(外文):Kuan-Hung Chen
口試委員:賴永康蘇慶龍易建男陳冠宏陳德生鄭經華
口試委員(外文):Yeong-Kang LaiChing-Lung SuJana YiKuan-Hung ChenDe-Sheng ChenChing-Hwa Cheng
口試日期:2016-07-21
學位類別:博士
校院名稱:逢甲大學
系所名稱:電機與通訊工程博士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:116
中文關鍵詞:主動式噪音控制feed-forward FxLMSfeedbackin-ear headphone
外文關鍵詞:Active noise cancellationfeed-forward FxLMSfeedback FxLMSin-ear headphoneVLSI design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
在主流的抗噪耳機當中,主動式噪音控制(Active Noise Control, ANC)通常用於降低低頻域噪音,而高頻噪音則藉由耳罩的材質、機構與密閉性來作被動式的衰減。在現在常見的主動式降噪系統中,大多使用高速數位訊號處理器來進行消除擾人噪音的運算,這為市面上商品化的ANC產品帶來高功耗而造成續航力不足的問題。然而,大部分的ANC耳機所開發的演算法建立在簡單的模擬而忽視實際運作下的限制,這些限制對於ANC的功耗是非常顯著的。本論文提出一個使用於高保真入耳式耳機,基於Adaptive Filtered-x Least Mean Square (FxLMS)演算法架構下的ANC電路之實現,並在擁有多樣性與高擴展性的前提,提出了新的方法來設計VLSI結構。所提出的設計包含了選擇適當的濾波器長度、低功率貯存機制的摺積、平行運算和高傳輸量管路架構,提供了不管在演算法、結構、邏輯和電路上達到高噪音衰減量的表現與低功耗的目標。在這些技術之下,本論文提出兩個設計範例-(1)基於前饋式FxLMS之低功率寬頻帶噪音消除之VLSI電路設計,(2)高效回授式主動噪音消除之VLSI電路設計。設計(1)在需要的高複雜度運算和成本的雙麥克風架構下,使用20MHz的工作時脈、84.2k個gate count之下,僅需要6.59mW的功率消耗,並在寬帶的粉紅噪音測試中,50Hz到1500Hz之間可以達到最大15dB的衰減量。設計(2)在單麥克風的情況下,可以做到最寬到600Hz與15dB的噪音衰減量。本論文使用TSMC 90-nm CMOS製程,所設計的兩個電路工作時脈皆為20MHz,此晶片成功驗證所提出之設計的正確性和實用性,成功達到的高噪音衰減,高傳輸速率與低功率消耗的需求。
Conventional active noise control (ANC) headphones often perform well in reducing the low-frequency noise and isolating the high-frequency noise by earmuffs passively. The existing ANC systems often use high-speed digital processors to cancel out disturbing noise, which result in high power consumption for a commercial ANC headphone. While ANC headphone applications are strongly influenced by practical constraints, most previous works developing algorithms for ANC headphones are based on simplified simulations only and neglect practical limitations. This dissertation proposes a dedicated ANC circuit implementation based on the well-known adaptive filtered-x least mean square (FxLMS) algorithm for high fidelity in-ear headphones, which includes the new techniques to design the VLSI architecture that owns both the versatility and scalability. The proposed design techniques which include the proper filter length selection, low-power storage mechanism for convolution, parallel processing, and high-throughput pipelining architecture provide optimization in the view points of algorithmic, architectural, logic, and circuit levels to achieve high noise reduction performance and low-power design goals. Using those techniques, this dissertation proposes two design examples which are (1) a low-power broad-bandwidth noise cancellation VLSI circuit design based on well-known feed-forward FxLMS algorithm, and (2) a high-performance feedback active noise cancellation VLSI circuit design. The design (1) can attenuate 15 dB for broadband pink noise between 50 and 1500 Hz when operated at 20-MHz clock frequency at the costs of 84.2 k gates and power consumption of 6.59 mW only, with constraints from higher cost and more complex due to it requires two microphones from the hardware structural view point. The design (2) can achieve 15 dB noise reduction and up to 600 Hz attenuation bandwidth, while using only one microphone and is not influenced by the causality constraint. Using the TSMC 90-nm CMOS technology, the optimum operating frequencies of the both proposed designs are 20-MHz which achieve good noise reduction, high data throughput rate, and low-power consumption. The success of this chip implementation proves the correctness and practicability of the proposed design techniques.
Acknowledgement.........................................................................................................I
Abstract........................................................................................................................II
Contents......................................................................................................................VI
Figure Captions.......................................................................................................VIII
Table Captions..........................................................................................................XII
Chapter 1: Introduction ..............................................................................................1
1.1 Evolution of ANC Systems……………………………...........……………….1
1.2 Implementation Challenges of ANC systems....……...…….………………….6
1.3 Research Objectives ......……...……………………………………………….9
1.4 Dissertation Organization.....……...…………....…………………………….11
Chapter 2: A Low-Power Broad-Bandwidth Noise Cancellation VLSI Circuit Design ..........................................................................................................................14
2.1 Introduction……………......……...………………………………………….16
2.2 Proposed Adaptive Feed-forward FxLMS ANC Architecture Design …........19
2.2.1 Design Considerations……………............…………………………….19
2.2.2 Proposed Hardware Architecture for the ANC In-Ear Headphone.........27
2.3 Implementation Results……………............……..…………….…………….41
2.4 Performance Evaluation and Comparison ……………..…………………….44
2.5 Summary……………............…………………………………..…………….49
Chapter 3: A High-Performance Feedback FXLMS Active Noise Cancellation VLSI Circuit Design ...................................................................................................51
3.1 Introduction…………..…........………………….……………..…………….53
3.2 Dedicated Adaptive Feedback FxLMS ANC Architecture Design…………..57
3.3 Implementation Results ……………………………………………………...68
3.4 Experiments and Performance Evaluation……………………………….......73
3.5 Summary…………………………………………………………………..….78
Chapter 4: A Chip Implementation .........................................................................80
4.1 Introduction…………..…........………………….….…….........…………….80
4.2 Design Process…………..…........……………………..….........…………….81
4.3 Measuring Results…………..…........…………………….........…………….83
4.4 Summary…………..…........………...……….….…….........………..……….86
Chapter 5: Conclusions and Future Works .............................................................87
5.1 Conclusions…………..…........………………….….…….........…………….87
5.2 Future Works…………..…........……...………….….……………………….88
REFERENCES………………………………………………………………………...89
VITA
Publication List
[1]P. Lueg, Process of Silencing Sound Oscillations, US Patent 2043416, Jun. 1936.
[2]H. F. Olson, E. G. May, “Electronic sound absorber,” J. Acoust. Soc. Am., vol. 25, no. 6, pp. 1130–1136, Nov. 1953.
[3]E. D. Simshauser and M. E. Hawley, “The noise cancelling headset - an active ear defender,” J. Acoust. Soc. Am., vol. 28, no. 4, pp. 773, 1956.
[4]W. B. Conover and R. J. Ringlee, “Recent contributions to transformer audible noise control,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 74, no. 3, pp. 77–90, Jan. 1955.
[5]M. J . M. Jessel and G. A. Mangiante, “Active sound absorbers in an air duct,” Journal of Sound and Vibration, vol. 23, no. 3, pp. 383–390, Aug. 1972.
[6]M. A. Swinbanks, “The active control of sound propagation in long ducts,” Journal of Sound and Vibration, vol. 27, no. 3, pp. 411–436, Apr. 1973.
[7]J. H. B. Poole and H. G. Leventhall, “An experimental study of Swinbanks’ method of active attenuation of sound in ducts,” Journal of Sound and Vibration, vol. 49, no. 2, pp. 257–266, Nov. 1976.
[8]G. Canevet, “Active sound absorption in an air conditioning duct,” Journal of Sound and Vibration, vol. 58, no. 3, pp. 333–345, Jun. 1978.
[9]J. C. Burgess, “Active adaptive sound control in a duct: a computer simulation,” J. Acoust. Soc. Am., vol.70, no. 3, pp. 715–726, Jun. 1981.
[10]D. R. Morgan, “An analysis of multiple correlation cancellation loops with a filter in the auxiliary path,” IEEE Trans. Acoust., Speech, Signal Process., vol. 28, no. 4, pp. 454–467, Aug. 1980.
[11]L. J. Eriksson and M. C. Allie, “Use of random noise for on-line transducer modeling in an adaptive active attenuation system,” J. Acoust. Soc. Am., vol. 85, no. 2, pp. 797–802, Oct. 1988.
[12]S. M. Kuo and D. Vijayan, “A secondary path modeling technique for active noise control systems,” IEEE Trans. Speech Audio Process., vol. 5, no. 4, pp. 374–377, Aug. 1997.
[13]M. Zhang, H. Lan, and W. Ser, “Cross-updated active noise control system with online secondary path modeling,” IEEE Trans. Acoust., Speech, Signal Process., vol. 9, no. 5, pp. 598–602, Jul. 2001.
[14]M. Zhang, H. Lan, and W. Ser, “A robust online secondary path modeling method with auxiliary noise power scheduling strategy and norm constraint manipulation,” IEEE Trans. Acoust., Speech, Signal Process., vol. 11, no. 1, pp. 45–53, Jan. 2003.
[15]M. T. Akhtar, M. Abe, and M. Kawamata, “A New structure for feedforward active noise control systems with improved online secondary path modeling,” IEEE Trans. Acoust., Speech, Signal Process., vol. 13, no. 5, pp. 1082–1088, Sept. 2005.
[16]S. C. Chan and Y. Chu, “Performance analysis and design of FxLMS algorithm in broadband ANC system with online secondary-path modeling,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 3, pp. 982–993, Mar. 2012.
[17]S. Ahmed, M. T. Akhtar, and X. Zhang, “Robust auxiliary-noise-power scheduling in active noise control systems with online secondary path modeling,” IEEE Trans. Audio Speech Lang. Process., vol. 21, no.4, pp. 749–761, Jan. 2013.
[18]S. M. Kuo and D. R. Morgan, Active Noise Control Systems: Algorithms and DSP Implementations, John Wiley & Sons, Inc., New York, USA, Feb. 1996.
[19]S. P. Moon, J. W. Lee, and T. G. Chang, “Performance analysis of an adaptive feedback active noise control based earmuffs system,” Appl. Acoust., vol. 96, pp. 53–60, Sept. 2015.
[20]K. Chen, R. Paurobally, J. Pan, and X. Qiu, “Improving active control of fan noise with automatic spectral reshaping for reference signal,” Appl. Acoust., vol. 87, pp. 142–152, Jan. 2015.
[21]R. Castae-Selga and R.S.S. Pea, “Active noise hybrid time-varying control for motorcycle helmets,” IEEE Trans. Control Syst. Technol., vol. 18, no. 3, pp. 602–612, Apr. 2010.
[22]S. M. Kuo and D. R. Morgan, “Active noise control: a tutorial review,” Proc. IEEE, vol. 87, no. 6, pp. 943–973, Jun. 1999.
[23]S. M. Kuo, I. Panahi, K. M. Chung, T. Horner, M. Nadeski, and J. Chyan, “Design of active noise control systems with the TMS320 family,” Texas Instruments, Stafford, TX, USA, Tech. Rep. SPRA042, Jun. 1996.
[24]L. Wu, X. Qiu, and Y. Guo, “A simplified adaptive feedback active noise control system,” Appl. Acoust., vol. 81, pp. 40–46, Jul. 2014.
[25]W. S. Gan, S. Mitra, and S. K. Kuo, “Adaptive feedback active noise control headset: implementation, evaluation and its extensions,” IEEE Trans. Consum. Electron., vol. 51, no. 3, pp. 975–982, Aug. 2005.
[26] Y. Song, Y. Gong, and S. M. Kuo, “A robust hybrid feedback active noise cancellation headset,” IEEE Trans. Speech Audio Process., vol. 13, no. 4, pp. 607–617, Jul. 2005.
[27]S. M. Kuo, S. Mitra, and W. S. Gan, “Active noise control system for headphone applications,” IEEE Trans. Control Syst. Technol., vol. 14, no. 2, pp. 331–335, Mar. 2006.
[28]M. Guldenschuh and R. Höldrich, “Prediction filter design for active noise cancellation headphone,” IET. Signal Process., vol. 7, no. 6, pp. 497–504, Aug. 2013.
[29]L. Zhang, L. Wu, and X. Qiu, “An intuitive approach for feedback active noise controller design,” Appl. Acoust., vol. 74, no. 1, pp. 160–168, Jan. 2013.
[30]L. Zhang and X. Qui, “Causality study on a feedforward active noise control headset with different noise coming directions in free field,” Appl. Acoust., vol. 80, pp. 36–44, Jun. 2014.
[31]C. Y. Chang and S. T. Li, “Active noise control in headsets by using a low-cost microcontroller,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1936–1942, May 2011.
[32]K. K. Shyu, C. Y. Ho, and C. Y. Chang, “A study on using microcontroller to design active noise control systems,” in IEEE Asia Pacific Conf. Circuits Syst.(APCCAS), Nov. 2014, pp. 443–446.
[33]S. Hu, R. Rajamani, and X. Yu, “Invisible speakers in home windows for simultaneous auxiliary audio playback and active noise cancellation,” Mechatronics, vol. 22, no.8, pp. 1031–1042, Dec. 2012.
[34]S. Hu, R. Rajamani, and X. Yu, “Directional cancellation of acoustic noise for home window applications,” Appl. Acoust., vol. 74, no. 3, pp. 467–477, Mar. 2013.
[35]T. Pàmies, J. Romeu, M. Genescà, and R. Arcos, “Active control of aircraft fly-over sound transmission through an open window,” Appl. Acoust., vol. 84, pp. 116–121, Oct. 2014.
[36]I. H. Yang, J. E. Jeong, U. C. Jeong, J. S. Kim, and J. E. Oh, “Improvement of noise reduction performance for a high-speed elevator using modified active noise control,” Appl. Acoust., vol. 79, pp. 58–68, May 2014.
[37]P. Peretti, S. Cecchi, L. Romoli, and F. Piazza, “Adaptive feedback active noise cancellation for yacht environments,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 737–744, Mar. 2014.
[38]X. Kong and S. M. Kuo, “Study of causality constraint on feedforward active noise control systems,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 2, pp. 183–186, Feb. 1999.
[39]PIC24H Family Data Sheet. High-Performance, 16-bit Microcontrollers. [Online]. Available: www.microchip.com/downloads/en/DeviceDoc/70175d.pdf, accessed Jan., 2015.
[40]The power consumption of the Texas Instruments C6748/46/42. [Online]. Available: http://processors.wiki.ti.com/index.php/C6747/45/43_Power_Consumption_Summary, accessed Jan., 2015.
[41]H. S. Vu, K. H. Chen, S. F. Sun, T. M. Fong, C. W. Hsu, and L. Wang, “A power-efficient circuit design of feed-forward FxLMS active noise cancellation for in-ear headphones,” in Proc. Int. Symp. VLSI Design, Autom. Test (VLSI-DAT), Apr. 2015, pp. 1–4.
[42]D. Allred, V. Krishnan, W. Huang, and D. Anderson, “Implementation of an LMS adaptive filter on an FPGA employing multiplexed multiplier architecture,” in Proc. Conf. Rec. 37th Asilomar Conf. Signals, Syst. Comput., Nov. 2003, pp. 918–921.
[43]J. C. Burgess, “Active adaptive sound control in a duct: a computer simulation,” J. Acoust. Soc. Am., vol. 70, no. 3, pp. 715–726, Sept. 1981.
[44]S. H. Yu, J. S. Hu, “Controller design for active noise cancellation headphones using experimental raw data,” IEEE/ASME Trans. Mechatronics, vol. 6, no. 4, pp. 483–490, Dec. 2001.
[45]C. Y. Chang and K. K. Shyu, “Active noise cancellation with a fuzzy adaptive filtered-X algorithm,” IEE Proc. - Circuits, Devices and Syst., vol. 150, no. 5, pp. 1350–2409, Oct. 2003.
[46]W. S. Gan and S. M. Kuo, “An integrated audio and active noise control headsets,” IEEE Trans. Consum. Electron., vol. 48, no. 2, pp. 242–247, Aug. 2002.
[47]D. Zhou and V. DeBrunner, “A new active noise control algorithm that requires no secondary path identification based on the SPR property,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1719–1729, May 2007.
[48]A. Carini and G. L. Sicuranza, “Optimal regularization parameter of the multichannel filtered-x affine projection algorithm,” IEEE Trans. Signal Process., vol. 55, no. 10, pp. 4882–4895, Oct. 2007.
[49]E. P. Reddy, D. P. Das, and K. M. M. Prabhu, “Fast adaptive algorithms for active control of nonlinear noise processes,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4530–4536, Sept. 2008.
[50]H. Bao and I. M. S. Panahi, “A novel feedforward active noise control structure with spectrum-tuning for residual noise,” IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2093–2097, Nov. 2010.
[51]Y. Xiao, “A new efficient narrowband active noise control system and its performance analysis,” IEEE Trans. Audio, Speech, Language Process., vol. 19, no. 7, pp. 1865–1874, Dec. 2010.
[52]M. T. Akhtar and W. Mitsuhashi, “Improving performance of hybrid active noise control systems for uncorrelated narrowband disturbances,” IEEE Trans. Audio, Speech, Language Process., vol. 19, no. 7, pp. 2058–2066, Feb. 2011.
[53]Y. Xiao and J. Wang, “A new feedforward hybrid active noise control system,” IEEE Signal Process. Lett., vol. 18, no. 10, pp. 591–594, Aug. 2011.
[54]M. Ferrer, A. Gonzalez, M. D. Diego, and G. Pinero, “Convex combination filtered-x algorithms for active noise control systems,” IEEE Trans. Audio, Speech, Language Process., vol. 21, no. 1, pp. 156–167, Aug. 2012.
[55]E. Spiriti, S. Morici, and L. Piroddi, “A gradient-free adaptation method for nonlinear active noise control,” Journal of Sound and Vibration, vol. 333, no. 1, pp. 13–30, Jan. 2014.
[56]M. S. Aslam and M. A. Z. Raja, “A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach,” Signal Process., vol. 107, pp. 433–443, Feb. 2015.
[57]H. S. Vu, K. H. Chen, S. F. Sun, T. M. Fong, C. W. Hsu, and L. Wang, “A 6.42 mW low-power feed-forward FxLMS ANC VLSI design for in-ear headphones,” in Proc. IEEE Int. Symp.Circuits and Syst., May 2015, pp. 2585–2588.
[58]H. S. Vu, K. H. Chen, and T. M. Fong, “Active noise control for in-ear headphones: Implementation and evaluation,” in Proc. IEEE Int. Conf. on Consumer Electronics-Taiwan, Jun. 2015, pp. 264–265.
[59]H. S. Vu and K. H. Chen, “A low-power broad-bandwidth noise cancellation VLSI circuit design for in-ear headphones,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., to be published, Oct. 2015. [Online]. Available: http://ieeexplore.ieee.org
[60]Haykin Simon. Adaptive filter theory. Prentice Hall; 2001.
[61]R. A. Burdisso, J. S. Vipperman, and C. R. Fuller, “Causality analysis of feedforward‐controlled systems with broadband inputs,” J. Acoust. Soc. Am., vol. 94, no. 1, pp. 234–242, Jul. 1993.
[62]H. Janocha and B. Liu, “Simulation approach and causality evaluation for an active noise control system,” IEEE Proc. Control Theory Appl., vol. 145, no. 4, pp. 423–426, Aug. 2002.
[63]E. Anderson and A. B. Wright, “Study of causal component placement in an active sound cancellation system,” J. Arkansas Acad. Sci., vol. 60, pp. 20–26, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top