跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連俊瑋
研究生(外文):chun-wei lian
論文名稱:在PDA 和DPN氮化製程下28奈米HK/MG pMOSFETs元件之電特性研究
論文名稱(外文):Electrical Quality of 28nm HK/MG pMOSFETs with PDA and DPN Treatment
指導教授:王木俊王木俊引用關係
指導教授(外文):Mu-Chun Wang
口試委員:陳雙源莊正王木俊
口試委員(外文): Mu-Chun Wang
口試日期:2014-06-26
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:閘極氧化層高介電係數氧化鉿去耦合電漿氮化製程沉積後高溫退火製程載子直接穿隧
外文關鍵詞:gate oxidecarrier direct tunnelingHKHfOxDPNPDA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1516
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技發展快速,金氧半導體元件已發展至奈米等級,電晶體尺寸的持續縮小面臨多種挑戰,例如薄的閘極氧化層會導致載子有直接穿隧的效應、提高了閘極漏電流和較高的臨界電壓(threshold voltage, VT)使得驅動電流有降低的效應。使用HK/MG技術是一個不錯的選擇,可以改善前述的問題。採用HK/MG技術也可以容許些許調整臨界電壓和降低功率消耗、延遲時間。為了避免HK與通道表面之間的界面密度增加,沉積適當的界面層(interfacial layer)是值得關注的技術。然而,加厚界面層會減小整體介電層的介電係數,如此一來,提高驅動電流的主要目的即受打則扣。因此界面層厚度的的控制是非常重要的。另外採用閘極後製程(gate-last)可以避免源/汲極離子佈值後使用退火溫度,而使金屬閘極熔化。利用HfOx/ZrOy/HfOx (HZH)沉積作為閘極介電質,可以提供相對應的介電係數。沉積ZrOy除了作為閘極介電質可以提高K值外,也可以提高HfOx的結晶溫度,並降低閘極漏電流。
以討論28奈米等級元件為本次研究,閘極介電層材料則選擇使用含氧化鉿/氧化鋯/氧化鉿(HfOx/ZrOy/HfOx, HZH)高介電係的數材料,以及使用含氮化去耦合電漿(DPN)製程和沉積後高溫退火製程元件(PDA),應用在HZH的退火中,探討此等HK/MG pMOSFETs 元件電特性,並比較在不同的氮濃度與退火溫度下之電元件特性。另亦探討HK/MG結合CESL應變技術下,在不同通道長度與量測溫度下的元件電特性。

Following the advanced process technology entering the nano-scale era, the semiconductor industry due to the feature-size shrinkage of semiconductor devices confronts several barrier challenges, such as a thin gate oxide layer causing carrier direct tunneling and a higher threshold voltage (VT) bringing about the possibly lower drive current. Adopting high-K and metal gate (HK/MG) technologies is a suitable choice to alleviate these previous problems. Using HK/MG technology also benefits to freely adjust the threshold voltage and diminish the power consumption or delay time due to the lower gate resistance in the circuit concern. To avoid the over interface state density between HK and channel surface, growing an appropriate interfacial layer (IL) as a buffer layer is noteworthy. However, the thicker IL decreases the chief purpose of depositing HK dielectric to improve the drive current. The thickness control for IL is very essential. Employing gate-last (GL) process is able to avoid the higher source/drain annealing temperature causing molten metal gate and harming process integration. Utilizing sandwiched HfOx/ZrOy/HfOx (HZH) as a gate dielectric appears an adequate method to supply a plentiful relative dielectric constant. Depositing ZrOy as gate dielectric can provides a higher k-value.
In this project, HfOx/ZrOy/HfOx as gate high-K material applied to 28nm devices was adopted. Furthermore, the decoupled plasma nitridation (DPN) process and the post deposition annealing (PDA) were employed during HZH annealing. Probing variables of the annealing temperature and the nitrogen concentration in DPN process influencing the device performance is a beneficial task in yield improvement. When the strain technology was also utilized, the device performance in different channel lengths and measured temperatures will depict the exploratory topics.

摘 要 I
Abstract II
誌謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
第二章 半導體元件物理概念 3
2.1 MOSFET 基本結構與特性 3
2.2 能帶(energy band)與能隙(energy gap)結構 5
2.3 載子的傳輸現象 7
2.4 P-N 接面的基本結構與特性 9
2.5 偏壓與內建電位 11
2.6 MOSFET元件輸出特性曲線 13
2.7 MOSFET元件轉移特性曲線 15
2.8 MOSFET元件物理特性 17
2.9 其它重要元件參數與特性 19
2.9.1 次臨界特性 19
2.9.2 臨界電壓的調整 20
2.9.3 遷移率退化 21
2.10 短通道效應 22
2.10.1 臨界電壓的下滑 22
2.10.2 汲極引發的能障下降 23
2.10.3 貫穿效應 24
2.11 降低短通道效應的製程方法 26
2.12 矽晶體的結構 27
第三章 高介電係數材料與製程整合 30
3.1 高介電係數材料/金屬閘極 30
3.1.1 簡介 30
3.2 高介電係數介電層的需求與特性 31
3.2.1 高介電係數材料的選擇 32
3.2.2 介電常數和導電帶能階差大小 34
3.3 薄膜型態 36
3.3.1 熱穩定性問題 37
3.3.2 界面品質 37
3.3.3 閘極相容性 38
3.3.4 製程整合相容性和可靠度問題 40
3.3.5 高介電係數介電層的元件製程 42
第四章 實驗結果 43
4.1 實驗架構說明 43
4.2 量測機台簡介 44
4.3 元件介紹 49
4.4 實驗條件 50
4.5 實驗結果 51
4.5.1 使用高介電係數元件的差異實驗 51
4.5.2 第一階段實驗結果 54
4.5.3 第二階段實驗結果 62
第五章 結論 66
參考文獻 67
作者簡介 70


[1]M. Meneghini, et al., “Time-dependent degradation of AlGaN/GaN high electron mobility transistors under reverse bias,” Applied Physics Letters, vol.100, no.3, pp.033505-033505-3, Jan. 2012.
[2]H.C. Yang, et al., “Study of temperature effects of mobility, swing, and early voltages on strained MOSFET devices,” IEEE 4th International Nanoelectronics Conference, pp.1-2, Jun. 2011.
[3]D. Misra, et al., “Interface engineering of high-K and high-mobility substrate interface,” IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, pp. 1-4, Oct. 2012.
[4]C. Mazure, et al., “Status of device mobility enhancement through strained silicon engineering,” IEEE International SOI Conference, Oct.2005.
[5]K.E. Yazdani, et al. “Ballistic phonon transport in strained Si/SiGe nanostructures with an application to strained-silicon transistor”, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, vol.2, pp. 424- 430, June 2004.
[6]S.E. Thompson, et al. “A 90-nm logic technology featuring strained-silicon”, IEEE Transactions on Electron Devices, vol. 51, no. 11, pp. 1790- 1797, Oct. 2004.
[7]W. Gu, et al., “Strained silicon dynamic threshold voltage MOSFETs for low voltage and ultra-high speed CMOS circuits,” International Conference on Solid-State and Integrated-Circuit Technology, pp. 134 - 137, Oct. 2008.
[8]R. Schaller, et al., “Moore's law: past, present and future,” IEEE Spectrum, vol.34, no.6, pp.52-59, Jun. 1997.
[9]T. L. Chien “Impacts of notched-gate structure on Contact Etch Stop Layer (CESL) stressed 90-nm nMOSFET,” IEEE Electron Device Letters, vol.28, no.5, pp.376-378, May 2007.
[10]T.L. Kyong, et al., “A study of strain engineering using CESL Stressor on reliability comparing effect of intrinsic mechanical stress,” IEEE Electron Device Letters, vol.30, no.7, pp.760-762, July 2009.
[11]C. H. Chien, et al., “An investigation of the effect of elastic constants of spacer in n-FETs CESL stressor,” IEEE Electron Device Letters, vol.31, no.7, pp. 638-640, July 2010.
[12]Lin, P.Y, et al., “Self-align nitride based logic NVM in 28nm high- K metal gate CMOS technology,” International Symposium on VLSI Technology, Systems and Applications, pp. 21-24, Apr. 2013.


[13]W. McMahon, et al., “Intrinsic dielectric stack reliability of a high performance bulk planar 20nm replacement gate high- K metal gate technology and comparison to 28nm gate first high- K metal gate process,” IEEE International Reliability Physics Symposium, pp. 4C.4.1 - 4C.4.4 , Apr. 2013.
[14]施敏,“半導體元件物理與製作技術”,國立交通大學出版社,2002 年。
[15]R. Kasim, et al., “Reliability for manufacturing oFn 45nm logic technology with high-K/metal gate transistors and Pb-free packaging,” IEEE International Reliability Physics Symposium, pp. 350-354, Apr. 2009.
[16]王木俊、劉傳璽, “薄膜電晶體液晶顯示器原理與實務”,新文京出版社, 2008 年。
[17]K. Michelakis, et al., “Average drift mobility and apparent sheet-electron density profiles in strained-Si-SiGe buried-channel depletion-mode n-MOSFETs,” IEEE Transactions on Electron Devices, vol.51, iss.8, pp.1309-1314, Oct.2004.
[18]D.J. Wouters, et al., “Subthreshold slope in thin-film SOI MOSFETs,” IEEE Transactions on Electron Devices, vol.37, no.9, pp.2022-2033, Sep. 1990.
[19]J.P. Colinge, et al., “Threshold voltage and subthreshold slope of multiple-gate SOI MOSFETs,” IEEE Electron Device Letters, vol.24, no.8, pp.515-517, Aug. 2003.
[20]R. Agaiby, et al., “nsight into the aggravated lifetime reliability in advanced MOSFETs with strained-Si channels on SiGe strain-relaxed buffers due to Self-Heating,” IEEE Transactions on Electron Devices, vol.55, no.6, pp.1568-1573, Jun. 2008.
[21]劉傳璽、陳進來, “半導體元件物理與製程” ,五南出版社,2011 年。
[22]S. Veeraraghavan, et al., “Short-channel effects in SOI MOSFETs,” IEEE Transactions on Electron Devices, vol.36, no.3, pp.522-528, Mar. 1989.
[23]C. Hu, “Modern semiconductor devices for integrated circuits" Pearson, pp.2-4, 2010.
[24]鄭晃忠、劉傳璽, “新世代積體電路製程技術” ,東華書局出版社,2011 年。
[25]J. Robertson, et al., “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol.vol.18, pp.1785-1791, 2000.
[26]G.D. Wilk, et al., “High- K gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, no.10, May 2001.
[27]J. Robertson, et al., “Electronic structure and band offsets in high-K oxides,” Extended Abstracts of International Workshop on Gate Insulator, pp. 71-72, Nov. 2001.
[28]S. Lee, et al., “Characteristics of an Al2O3 Thin Film Deposited by a Plasma Enhanced Atomic Layer Deposition Method Using N2O Plasma,” Electronic Materials Letters, vol. 3, no. 1, pp. 17-21, 2007.
[29]H. Spahr, et al., “Regimes of leakage current in ALD-processed Al2O3 thin-film layers,” Journal of Physics D: Applied Physics, vol. 46, no. 15, Mar. 2013.
[30]W. H. Wu, et al., “Effects of base oxide in HfSiO/SiO2 high-k gate stacks,” IEEE Physical and Failure Analysis of Integrated Circuits, pp.25-28, July 2004.
[31]Y. Nara, et al., “Hf-based high-K gate dielectrics-scalability for hp45 node and beyond,” IEEE International Workshop on Nano CMOS, pp. 132 - 135, Oct. 2006.
[32]蕭宏,“半導體製程技術導論”,五南圖書出版,2001年。
[33]M.C. Wang, et al., “ Device Characterization for Stacked High-k/Metal Gate of NMOSFETs before and after PDA Process,” IEEE Nanotechnology Materials and Devices Conference, Oct. 2013.
[34]W.D. Lee, et al., “ Electrical Quality of 28nm HK/MG MOSFETs with PDA and DPN Treatment,” 3rd International Symposium on Next-Generation Electronics, May 2014.
[35]M.C. Wang, et al., “ Gate Leakage for 28nm High- K/Metal Gate NMOSFETs after DPN Treatment with Different Nitrogen Concentration,” International Electron Devices and Materials Symposium, Nov. 2013.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊