|
[1] R. Chassaing, DSP Applications Using C and the TMS320C6X DSK. USA: John Wiley & Sons, Inc., 2002. [2] R. Chassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK. USA: John Wiley & Sons, Inc., 2005. [3] E. Demidenko, A. Hartov, N. Soni, and K. D. Paulsen, “On optimal current patterns for electrical impedance tomography,” IEEE Trans. Biomed. Eng., vol.52, no.2, pp.238-248, 2005. [4] L. M. Heikkinen, M.Vauhkonen, T. Savolainen, and J. P. Kaipio, “Modelling of internal structures and electrodes in electrical process tomography” Meas. Sci. Technol., vol.12, pp.1012-1019, 2001. [5] W.-L. Huang, EIT System Circuits Optimization and Simulation for Tissue Monitoring Application, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Taiwan, 2005. [6] Ø. Isaksen, “A review of reconstruction techniques for capacitance tomography,” Meas. Sci. Technol, vol.7, pp.325-337, 1996. [7] T. E. Kerner, D. B. Williams, K. S. Osterman, F. R. Reiss, A. Hartov. and K. Paulsen, “Electrical impedance image at multiple frequencies in phantoms,” Physiol. Meas., vol.21, pp. 67–77, 2000. [8] K. Y. Kim, Y. B. Choi , B. S. Kim , M. C. Kim , J. H. Lee , J. W. Park , and Y. J. Lee, “Regularized modified Newton Raphson algorithm for electrical impedance tomography based on the exponentially weighted least square criterion ,” Proc. TENCON, vol.1, pp. 64-68, 2000. [9] W. R. B. Lionheart, J. Kaipio, and C. N McLeod, “Generalized optimal current patterns and electrical safety in EIT,” Physiol. Meas., vol.22, pp.85–90, 2001. [10]J. L. Mueller, D. Isaacson, and J. C. Newell, “Reconstruction of conductivity changes due to ventilation and perfusion from EIT data collected on a rectangular electrode array,” Phys. Med. Biol., vol.22, pp.97–106, 2001. [11]M. Soleimani, G. L. Camille, and A. Adler, “Imaging of conductivity changes and electrode movement in EIT,” Physiol. Meas., vol. 27, pp.103–113, 2006.. [12]B. C. D. Simone, R. Sicillano, A. Pachi, C. Cametti, and F. De Luca, “Electrical impedance tomography via filtered-back projection of fan current distribution: A numerical simulation,” Bioelectromagnetics, vol.23, pp.516-521, 2002. [13]M. Soleimani, “Electrical impedance tomography system: an open access circuit design,” BioMedical Engineering Online, vol.5, pp.28, 2006. [14]H.-S. Tung, Comparisons of the Reconstruction Algorithms for the Electrical Impedance Imaging, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Taiwan, 1995. [15]M. Vauhkone, W. R. B. Lionheart, L. M. Heikkinnen, and P. J. Vauhkonnen, “A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images,” Physiol. Meas., vol.22, pp.107–111, 2001. [16]M. Wang, “Inverse solution for electrical impedance tomography based on conjugate gradients methods,” Meas. Sci. Technol., vol.13, pp.101-117, 2002. [17]C. Wang, and H. X. Wang, “An image reconstruction algorithm based on generalized inverse for medical impedance tomography,” Proc Int. Conf. IEEE Machine Learning and Cybermetics, vol.4, pp.2152- 2157, 2003. [18]F.-H. Wu, Electrical Impedance Image Reconstruction Using DSP, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Taiwan, 1998. [19]C.-F. Wu, Electrical Impedance Tomography Design for Tissue Electrical Property Application, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Taiwan, 2004 [20]J. G. Webster, Electrical Impedance Tomography, USA: Adam Hilger, 1990. [21]W. L. Zhao, and F. Dong, “Realization of image reconstruction algorithms for ERT based on single drive electrode method,” Proc Int. Conf. Machine Learning and Cybernetics, vol.9, pp.5341- 5345, 2005. [22]TMS320C6713 DSK Technical Reference. [23]TMS320C6713 DSK Floating-Point Digital Signal Processor SPRU 189. [24]TMS320C6713 DSK Floating-Point Digital Signal Processor SPRS 186. [25]TMS320C6713 DSK Floating-Point Digital Signal Processor User’s Manual. [26]TMS320C6000 DSP Design Workshop
|