|
[1] W. Diffie and M. Hellman. (1976), New directions in cryptography, IEEE Transactions on Information Theory, Vol. 22 , pp. 644-654. [2] E. Dawson, A. Clark, and C. Boyd (Eds.): ACISP 2000 LNCS 1841, A Proposal of a New Public Key Cryptosystem Using Matrices over a Ring, pp. 41-48. [3] Shanghai Jiao Tong University, Shanghai 200240, P. R. China New Public Key Cryptosystems Using Polynomials over Non-commutative Rings , Department of Computer Science and Engineering. [4] J. Hastad, On using RSA with low exponent in a public key network, Proc. of Crypto'B5, pp.403-408 (1985). [5] Pieprzyk J.P., Rutkowski D.A., Design of Public-Key Cryptosystems Using Idempotent Elements, Froc. of ELTRCCON, Brighton, UK, 26-28 September, 1904, pp.297-308. [6] K. Koyama, U. M. Maurer, T. Okamoto, and S. A. Vanstone, “New public-key schemes based on elliptic curves over the ring Zn,in Advances in Cryptology-CRYPTO’91 (Lecture Notes in Computer Science, vol. 576). Berlin, Germany: Springer-Verlag, 1991, pp. 252-266. [7]F. Pichler(Ed.): Advances in Cryptology - EUROCRYPT '85, LNCS 219, pp.73-78, 1986, on public-key cryptosystems built using polynomial rings. [8] Proceedings of the 5th WSEAS Int. Conference on Information Security and Privacy, Venice, Italy, November 20-22, 2006,A Public-Key Cryptosystem Scheme on Conic Curves over the Ring Zn. [9] O. Goldreich, S. Goldwasser and S. Halevi, Public-key Cryptosystems from Lattice Reduction Problems, In Proc. of Crypto'97, volume 1294 of LNCS,pp.112-131, Springer-Verlag, 1997. [10] DeMing D.E., Cryptography and Data Security, Addison-Wesley Publishing Company, Reading, Messachusetts, 1982. [11] R.L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACAl, Vol. 21, No. 2, pp. 120-126 (1978). [12] WANG Biao et al. Sci China Ser F-Inf Sci, The improved QV signature scheme based on conic curves over Z_{n} ,Apr. 2009 | vol. 52 | no. 4 | 602-608. [13] N.Koblitz, Elliptic curve cryptosystems, Mathematics of computation, 48, pp. 203-209, 1987. [14] V. Miller, Uses of elliptic curves on cryptography, Advances in cryptology: proceedings of crypto '85, LNCS 218, pp.417-426, New york : Springer-Verlag, 1986. [15] Rabin, Michael. Digitalized Signatures and Public-Key Functions as Intractable as Factor- ization. MIT Laboratory for Computer Science, January 1979. [16] Merkle, Ralph; Hellman, Martin (1978). Hiding information and signatures in trapdoor knapsacks. Information Theory, IEEE Transactions on 24 (5): 525-530. [17] S.-H. Paeng, K.-C. Ha, J.-H. Kim, S. Chee and C. Park, New public key cryptosystcm using nite Non Abelian Groups. In J. Kilian (Ed.): CRYPTO 2001, LNCS 2139, pp. 470-485, Springer-Verlag, 2001.. [18] T. El-Gamal, A public key cryptosystem and a signature sclieme based on the discrete logarithm, IEEE Transactions on Information Theory, Vol. 31, NO. '1, pp. 469-472 (1985). [19] Kenneth H. Rosen, Elementary Number Theory and Its Applications, Fifth Edition. [20] Mukesh Kumar Singh, Texas Instruments Inc. Public Key Cryptography with Matrices, Proceedings of the 2004 IEEE, Workshop on Information Assurance, United States Military Academy, West Point, NY 10-11 June. [21] P. Nguyen, Cryptanalysis for the Goldreich-Goldwasser-Halevi Cryptosystem form Crypto'97, In Proc. of Crypto'99, volume 1666 of LNCS,pp. 288-304, Springer-Verlag, 1999.
|