跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李盈
研究生(外文):Ying Lee
論文名稱:中草藥多醣調節黏膜免疫系統的機制探討
論文名稱(外文):A study for Immuno-regulatory effect of herbal polysaccharides on mucosal system
指導教授:吳榮燦
指導教授(外文):Rong-Tsun Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:81
中文關鍵詞:黏膜免疫多醣氣喘免疫佐劑
外文關鍵詞:mucosal immunitypolysaccharideasthmavaccine adjuvant
相關次數:
  • 被引用被引用:5
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
腸道黏膜免疫系統是個很特別的地方,一方面能夠避免腸內共生菌所引起的免疫反應,一方面又能抵禦外來病原菌的侵略,兩種截然不同的免疫反應,在正常人的體內能達到平衡的狀態。近年來,許多文獻指出,腸道上皮細胞在調節腸道免疫系統上扮演重要的角色,例如利用CX3CL這類chemokine使dendritic cell趨向Th2的免疫走向,或是抑制macrophage 在lamina propria 中表現某些特定的receptor,避免對commensal過度反應而引發慢性發炎的疾病。有鑑於腸道上皮細胞的重要性,本論文旨在建立可以評估中草藥多醣在調節細胞和活體動物的免疫功能的平台,並希望能進一步探討中草藥多醣調控腸道免疫的機制之所在。
在in vitro IEC-6實驗中,可以看到靈芝多醣、北耆多醣對於IL-6、TNF-α、TLR(Toll-like receptor)7、TLR9的基因表現有促進的作用,可能具有具有提升innate immunity的能力,能夠幫助免疫細胞的活化;另一方面,石斛多醣能夠大幅提昇TGF-β汹汹的基因表現,顯示石斛多醣可能具有誘導免疫抑制的路徑。
在in vivo 實驗中,我們利用OVA 引起的氣喘小鼠測試石斛多醣的治療效果,結果發現石斛多醣在30和90 mg/kg/day的劑量給予下,能夠顯著性的降低呼吸道阻力,達到氣喘減緩的目的。同時在肺部沖洗液中,能夠顯著性的減少免疫細胞和嗜酸性白血球(eosinophil)的浸潤現象,在肺部切片上也觀察到肺部的發炎情況有被抑制。除此之外,我們純化Lamina propria和肺部淋巴節(mediastinal lymph node, MLN)的細胞,進行CD4+CD25+的細胞染色,發現給予石斛多醣的小鼠,在腸道中的此類regulatory T cells的比例有顯著性的增加,不過在肺部的MLN中則無顯著性差異。除此之外,我們還發現肺部中IL-13和eotaxin-1 mRNA的量有顯著性的減少,血清中和肺部沖洗液的IgE也有降低的情況,顯示石斛多醣能藉由抑制免疫細胞在肺部中的聚集,減緩氣喘的現象。
根據之前實驗室的研究,發現山藥多醣有作為黏膜免疫佐劑的潛力,為了進一步確認這個現象,我們將山藥多醣和市售的感冒疫苗做混和後,以鼻點的方式做sensitization,犧牲後收取血清、肺部沖洗液和鼻腔沖洗液,以ELISA的方式檢測HA-specific IgG和 IgA的量是否有提升的作用。結果發現在給予山藥多醣
的組別對於提升IgG的效果最為明顯,在IgA部分也同樣具有提升效果,此結果表示山藥多醣具有做為黏膜免疫佐劑的能力,可以幫助產生血清和黏膜部位的IgG和IgA抗體,達到第一線的保護的作用。
The gut has a complex system to maintain the homeostasis in the battle of limiting inflammatory responses to commensal bacteria while retaining the ability to initiate protective adaptive immune responses to pathogens. Recently, some researches show that intestinal epithelial cells (IECs) may play key role in maintaining the homeostasis, for example, thymic stromal lymphopeitin (TSLP) produced by the IEC is capable of directing dendritic cells towards a Th2 response, and influencing the differentiation properties of monocytes into tissue macrophages. We’d like to develop a system to elucidate the bioactivity of polysaccharides from Chinese herbs (Ganoderma Lucidum, Astragalus mongholicus, Dendrobium huoshanense, Dioscorea opposita) using IEC-6 as a platform, and how they regulate intestinal immune system.
With the treatment of GaLuPS and AsMoPS,IEC-6 can up-regulate IL-6、TNF-α、TLR7、TLR9 gene expression, whileas DeCaPS can up-regulate TGF-刍 gene expression, which is known as immunosuppressive cytokine, leading to the proliferation of regulatory T cell.
In our in vivo OVA-induced asthma animal model, oral treatment with 30 and 90 mg/kg/day DeCaPS was shown to suppress asthma induced by active immunization and challenged with OVA. Here we show that DeCaPS can reduce pulmonary eosinophil recruitment and OVA-specific IgE in serum and bronchoalveolar lavage fluids (BALF), attenuate inflammation in lung, and decrease bronchial hyper-reactivity stimulated by methacholine. We also found that IL-13 and eosinophil-chemokine eotaxin(CCL11) mRNA from lung homogenates are lower in DeCaPS group. Furthermore, the population of CD4+CD25+ increases in intestinal lamina propira with the treatment of DeCaPS, whereas there is no difference in mediastinal lymph node in lung and spleen. According to these results, we demonstrate that DeCaPS has potential to attenuate asthma by suppressing the recruitment of eosinophil and Th2 cell in lung.
Our lab had previously demonstrated that DisPoPS has potential to be used as mucosal adjuvant, so we use BALB/c mice challenged with influenza vaccine mixed with DisPoPS intranasally to confirm this result. After sacrificing the mice at day 30, we found that DisPoPS was capable of inducing a significant increase in HA-specific total IgG and IgA from lung wash、nasal、vaginal wash and serum. Our results showed that DisPoPS is a good mucosal adjuvant.
目錄--------------------I
圖次--------------------II
縮寫表------------------IV
中文摘要----------------1
英文摘要----------------2
緒論--------------------3
試藥及材料--------------10
實驗方法----------------15
結果--------------------24
討論--------------------29
參考文獻----------------39
圖表 -------------------45
1. Booth C, and Potten, CS, 2000, Gut insitncts:thoughts on intestinal epithelial stem cells. J. Clin.Invest 105:1493-1499.
2. Van Den Brink GR, de Santa Barbara P, Roberts DJ. 2001. Epithelial cell differentiation : a Mather of choice. Science 294:2115-2116.
3. Fellermann, K.S., E.F. 2001. Defensins--innate immunity at the epithelial frontier. Eur.J.Gastroenterol.Hepatol 13:771-776.
4. Ganz, T. 2003. Defensins:antimicrobial peptides of innate immunity. Nat. Rev.Immunol. 3:710-720.
5. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol.:269-273.
6. Allan McI. Mowat, 2003. Anatomical basis of telerance and immunity t0 intestinal antigens.Nat. Rev. Immuno. 3:331-341.
7. Kernéis S, Caliot E, Stubbe H, Bogdanova A, Kraehenbuhl J, Pringault E. 2000. Molecular studies of the intestinal mucosal barrier physiopathology using cocultures of epithelial and immune cells:a thechina. Microbes Infect.2(9):1119-1124
8. David W. K. 2004. Mucosal immune responces. Best Practice & Research Clinical Gastroenterology 18:387–404.
9. Shiloh MU, Nathan CF. 2000. Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Current Opinion in Microbiology 3:35-42.
10. Paul WE and Seder RA. 1994. Lymphocyte responses and cytokines. Cell 76:241-251.
11. Mowat AM. 2003. Anatomical basis of tolerance and immunity to intestinal antigens. Nature Reviews Immunology 3:331-341.
12. Mayer L. 2003. Mucosal immunity. Pediatrics 111:1595-1600.
13. McGuirk P and Mills KH. 2002. Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. diseases. Trends in Immunology 23:450-455.
14. Mayer L, and Shao L. 2004. Therapeutic potential of oral tolerance. Nat Rev Immunol 4:407-419.
15. Sihorkar V, and Vyas SP. 2001. Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J Pharm Pharm Sci. 4:138-158.
16. Lemaitre B, Meister M, Govind S, Georgel P, Steward R, Reichhart JM, Hoffmann JA. 1995. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J. 1:536-545.
17. Medzhitov R, and Janeway CA Jr. 1996. On the semantics of immune recognition. Res Immunol. 147:519-522.
18. Underhill,D.M and Ozinsky,A. 2002. Toll-like receptors:key medidators of microbe detection. Curr Opin Immunol. 14:103-110.
19. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 3:196-200.
20. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, Lee HK, Shen C, Cojocaru G, Shenouda S, Kagnoff M, Eckmann L, Ben-Neriah Y, Raz E. 2006. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol. 8:1327-1336.
21. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 167:1882-1885.
22. Lang KS, Recher M, Junt T, Navarini AA, Harris NL, Freigang S, Odermatt B, Conrad C, Ittner LM, Bauer S, Luther SA, Uematsu S, Akira S, Hengartner H, Zinkernagel RM. 2005. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nature Medicine 11:138 - 145.
23. Marshak-Rothstein, A. 2006. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823-835.
24. Mahida Y.R. 2004. Epithelial cell responses. Best Practice & Research Clinical Gastroenterology 18:241.
25. Thomas T. MacDonald. and Giovanni Monteleone 2005. Immunity, Inflammation, and Allergy in the Gut. Science 307:1920.
26. Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A, Sampietro GM, Nespoli A, Viale G, Allavena P, Rescigno M. 2005. Intestinal immune homeostasis is regulated by the crosstalk between epithelium cell and dendritic cells. Nature Immunology 6:507.
27. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC. 2005. CX3CR1-Mediated Dendritic Cell Access to the Intestinal Lumen and Bacterial Clearance. Science 307:254-258.
28. 潘宜欣. 靈芝多醣於腸道免疫系統作用的研究. 陽明大學生物藥學所碩士論文.
29. 黃鈺惠. 2003. 多醣作為口服疫苗佐劑作用機轉之探討. 陽明大學生物藥學所碩士論文.
30. 黃郁靜. 2004. 中草藥多醣的生物活性及其吸收、代謝相關性的研究.
陽明大學生物藥學所碩士論文.
31. Barnes, P.J. 2004. New drugs for asthma. Nat Rev Drug Discovery 3:831-844.
32. Tattersfield A. E. 2002. A good overview of the pathophysiology and clinical features of asthma. Lancet 360:1313–1322.
33. Wills-Karp M. 1999. Imunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol. 17:255-281.
34. Barnes, P.J. 2003. Pathophysiology of asthma. Eur. Respir. 8:84-113.
35. Payne DN, Rogers AV, Adelroth E, Bandi V, Guntupalli KK, Bush A, Jeffery PK. 2003. Early thickening of the reticular basement membrane in children with difficult asthma. Am. J. Respir.Crit. Care Med. 167:78-82.
36. Holgate ST. 2007. The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol. 28:248-251.
37. Lipworth, B.J. 1999. Systemic adverse effects of inhaled corticosteroid therapy: A systematic review and metaanalysis. Arch. Intern. Med. 159:941-955.
38. McI.Mowat, A. 2003. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331.
39. Palese P. 2006. Making better influenza virus vaccines? Emerg Infect Dis. 12:61-65.
40. Marian R. Neutra and Pamela A. Kozlowski. 2006. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6:148-158.
41. 黃慧娟. 2003. 山藥生物活性之研究. 陽明大學生物藥學所碩士論文
42. 陳詩詩. 2001. 以免疫調節及細胞再生觀點探討山藥生物活性之研究.
陽明大學生物藥學所碩士論文
43. Sy LB, Wu YL, Chiang BL, Wang YH, Wu WM. 2006. Propolis extracts exhibit an immunoregulatory activity in an OVA-sensitized airway inflammatory animal model. International Immunopharmacology 6:1053–1060.
44. Lin ZB. 2005. Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci. 99:144-153.
45. Griffin E, Håkansson L, Formgren H, Jörgensen K, Peterson C, Venge P. 1991. Blood eosinophil number and activity in relation to lung function in patients with asthma and with eosinophilia. J Allergy Clin Immunol 87:548-557.
46. Marc E. Rothenberg and Simon P. Hogan. 2006. The Eosinophil. Annu. Rev. Immunol. 24:147-174.
47. Seroogy CM, and Gern JE. 2005. The role of T regulatory cells in asthma. J Allergy Clin Immunol. 116:996.
48. Leo Lefranc﹐ois and Lynn Puddington. 2006. Intestinal and Pulmonary Mucosal T Cells: Local Heroes Fight to Maintain the Status Quo. Annu Rev Immunol. 24:681.
49. Yssel H, Abbal C, Pène J, Bousquet J. 1998. The role of IgE in asthma. Clin Exp Allergy. Suppl 5:104.
50. D'Amato G. 2006. Role of anti-IgE monoclonal antibody (omalizumab) in the treatment of bronchial asthma and allergic respiratory diseases. Eur J Pharmacol. 533:302.
51. Strickland DH, Stumbles PA, Zosky GR, Subrata LS, Thomas JA, Turner DJ, Sly PD, Holt PG. 2006. Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells. JEM 203:2649.
52. Larche M. 2006. Immunoregulation by targeting T cells in the treatment of allergy and asthma. Curr Opin Immunol. 18:745.
53. La Cava A, Van Kaer L, Fu-Dong-Shi . 2006. CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol. 27:322.
54. Idzko M, Hammad H, van Nimwegen M, Kool M, Müller T, Soullié T, Willart MA, Hijdra D, Hoogsteden HC, Lambrecht BN. 2006. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest. 16:2935-2944.
55. Oki S, and Miyake S. 2007. Invariant natural killer T (iNKT) cells in asthma: a novel insight into the pathogenesis of asthma and the therapeutic implication of glycolipid ligands for allergic diseases. Allergol Int. 56:7-14.
56. Hammad H, and Lambrecht BN. 2006. Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J Allergy Clin Immunol. 118:331-336.
57. Ostroukhova M, Seguin-Devaux C, Oriss TB, Dixon-McCarthy B, Yang L, Ameredes BT, Corcoran TE, Ray A. 2004. Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest. 114:28-38.
58. Akbari O, DeKruyff RH, Umetsu DT. 2001. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol. 2:725-731.
59. Kuwajima S, Sato T, Ishida K, Tada H, Tezuka H, Ohteki T. 2006. Interleukin 15–dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat Immunol. 7:740-476.
60. Odemuyiwa SO, Ghahary A, Li Y, Puttagunta L, Lee JE, Musat-Marcu S, Ghahary A, Moqbel R. 2004. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase.
J Immunol 173:5909-5913.
61. Ying S, O'Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, Robinson D, Zhang G, Zhao J, Lee TH, Corrigan C. 2005. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol. 174:8183-8190.
62. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. 2003. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278:1910-1914.
63. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 6:1123-1132.
64. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6:1133-1141.
65. Hofstetter, H.H. 2005. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell.Immunol. 237:123-130.
66. Murphy, C.A. 2003. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198:1951-1957.
67. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D. 2006. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116:1310-1316.
68. Kolls JK, Kanaly ST, Ramsay AJ. 2003. Interleukin-17: an emerging role in lung inflammation. Am. J. Respir. Cell Mol. Biol. 28:9-11.
69. Linden, A., and M. Adachi. 2002. Neutrophilic airway inflammation and IL-17. Allergy. 57:769-775.
70. Chvatchko Y, Proudfoot AE, Buser R, Juillard P, Alouani S, Kosco-Vilbois M, Coyle AJ, Nibbs RJ, Graham G, Offord RE, Wells TN. 2003. Inhibition of airway inflammation by amino terminally modified RANTES/CC chemokine ligand 5 analogues is not mediated through CCR3. J Immunol 171:5498-5510.
71. Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B. 2006. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med. 203:2715-2725.
72. Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P. 1997. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 185:785-790.
73. Erin L. Giudice , James D. Campbell. 2006. Needle-free vaccine delivery. Advanced Drug Delivery Reviews 58:68.
74. Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, Takahashi H, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H. 2005. Synthetic Double-Stranded RNA Poly(I:C) Combined with Mucosal Vaccine Protects against Influenza Virus Infection. JOURNAL OF VIROLOGY 79:2910.
75. Xu W, He B, Chiu A, Chadburn A, Shan M, Buldys M, Ding A, Knowles DM, Santini PA, Cerutti A. 2007. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat Immunol. 8:294-303.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top