跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳翊安
研究生(外文):Chen, Yi-An
論文名稱:CREAK : 基於色彩以及視網膜之特徵點描述子
論文名稱(外文):CREAK : Color-based REtinA Keypoint descriptor
指導教授:蔡文錦蔡文錦引用關係
指導教授(外文):Tsai, Wen-Jiin
口試委員:許秋婷蕭旭峰蔡文錦陳華總
口試委員(外文):Hsu, Chiou-TingTsai, Wen-JiinChen, Hua-Tsung
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:72
中文關鍵詞:影像配對特徵點描述子人眼視網膜色彩資訊特徵點
外文關鍵詞:Image matchingfeature descriptorkeypoint descriptorhuman retinacolor information
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
如何有效地擷取影像中的特徵點,適當的描述特徵點並且正確的配對是許多電腦視覺應用的基礎,本論文著重在特徵點描述的研究上。因為二元特徵點描述子(binary descriptor)相較於傳統的浮點數特徵點描述子(float point descriptor) (ex. SIFT) 有更低的計算複雜度以及更少的空間花費,這些特性使得二元特徵點描述子在電腦視覺相關領域越來越熱門。
近年來,大部分的二元特徵點描述子只參考影像中的灰階資訊進行比對,但是忽略了色彩資訊的重要性,因此本論文的主要貢獻在於,透過模擬人眼視網膜上的感光細胞分布,設計了一個能有效利用色彩資訊的二元特徵點描述子,相較於傳統僅使用灰階資訊的二元特徵點描述子,我們的方法能在影像上面擷取更多的資訊,藉此在影像配對上達到更精準的表現。除此之外,根據實驗結果,本論文提出的方法不僅維持著良好的準確率,而且跟熱門的二元特徵點描述子比較起來有著更快的配對速度,以及只需要花費不到一半的記憶體空間。

Feature matching between images is key to many computer vision applications. Effective Feature matching requires effective feature description. Recently, binary descriptors which are used to describe feature points are attracting increasing attention for their low computational complexity and small memory requirement. However, most binary descriptors are based on intensity comparisons of grayscale images and did not consider color information. In this paper, a novel binary descriptor inspired by human retina is proposed, which considers not only gray values of pixels but also color information. Experimental results show that the proposed feature descriptor spends fewer storage spaces while having better precision level than other popular binary descriptors. Besides, the proposed feature descriptor has the fastest matching speed among all the descriptors under comparison, which makes it suitable for real-time applications.
Chapter 1 Introduction 1

Chapter 2 Related Work 4

Chapter 3 The CREAK Descriptor 8
3.1 Motivation 8
3.2 Sampling pattern 10
3.3 Orientation pair 12
3.4 Building the Descriptor 15

Chapter 4 Experimental Results 18
4.1 Color Space Selection 19
4.2 Comparsion with different Orientation pairs 23
4.3 Comparsion with different Binary Descriptors 29
4.4 Comparsion with different Floating-point based Descriptor 33
4.5 Extremely matching case example 39
4.6 Other comparsion results 41

Chapter 5 Conclusion 70

Chapter 6 Reference 71

[1] D. G. Lowe, ”Distinctive image features from scale-invariant keypoints,” Int’l Journal of Computer Vision, vol. 60, issue 2, pp. 91-110, 2004.

[2] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” European Conf. Computer Vision, pages 404–417. Springer, 2006.

[3] A. Alahi, R. Ortiz, and P. Vandergheynst., “Freak: Fast retina keypoint,” Computer Vision and Pattern Recognition, pp. 510–517, 2012.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua., “Brief: Binary robust independent elementary features,” In European Conf. Comput. Vision, pp. 778–792, 2010.

[5] E. Tola, V. Lepetit, and P. Fua., “Daisy: An efficient dense descriptor applied to wide-baseline stereo,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32, issue 5, pp. 815–830, 2010.

[6] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski., “Orb: an efficient alternative to sift or surf,” Int’l Conf Comput. Vision, pp. 2564–2571, 2011.

[7] S. Leutenegger, M. Chli, and R. Y. Siegwart., “Brisk: Binary robust invariant scalable keypoints,” Int’l Conf Com-put. Vision, pp. 2548–2555, 2011.

[8] Gil Levi and Tal Hassner., “LATCH: Learned Arrangements of Three Patch Codes,” IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, March, 2016

[9] Matheus A. Gadelha, Bruno M. Carvalho., “DRINK: Discrete Robust INvariant Keypoints,” Int’l Conf on Pattern Recognition (ICPR), 2014

[10] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool., “A comparison of affine region detectors,” Int’l Journal of Comput. Vision, vol. 65, pp. 43–72, 2005

[11] K. Mikolajczyk and C. Schmid., “A performance evaluation of local descriptors,” Trans. Pattern Anal. Mach. Intell., 27(10):1615–1630, 2005

[12] I. Barandiaran, C. Cortes, M. Nieto, M. Gran ̃a, and O. Ruiz., “A New Evaluation Framework and Image Dataset for Key Point Extraction and Feature Descriptor Matching,” Int’l. Conf. Computer Vision Theory and Applications , (VISAPP), 2013

[13] K. Mikolajczyk and C. Schmid., “An affine invariant interest point detector,” Computer Vision (ECCV), 2002

[14] M.Everingham., “The Pascal Visual Object Classes (VOC) Challenge,”[Online].Available:http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html

[15] Helga., “Kolb How the Retina Works”, American Scientist, 2003

[16] A. Hendrickson., “Organization of the Adult Primate Fovea,” Macular Degeneration, 2005

[17] G. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta ophthalmologica., Supplementum 6, Levin & Munksgaard, Copenhagen, 1935.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top