跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳媺媱
研究生(外文):Chen,meiyau
論文名稱:菸鹼醯胺線嘌呤二核苷酸在能量限制延長人類細胞壽命扮演之重要角色
論文名稱(外文):Nicotinamide Adenine Dinucleotide Plays A Crucial Role In Calorie Restriction Extended Replicative Lifespan Of Human Hs68 Cells
指導教授:宋祖瑩宋祖瑩引用關係楊乃成楊乃成引用關係
指導教授(外文):Song, TuzzyingYang, Naecherng
口試委員:胡淼琳葉姝蘭
口試日期:2012-07-18
學位類別:碩士
校院名稱:中州科技大學
系所名稱:保健食品系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:57
中文關鍵詞:能量限制
外文關鍵詞:calorie restriction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:857
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
能量限制(calorie restriction; CR)具有延長生物體壽命的作用。菸鹼醯胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide; NAD+)是一種活化態的維生素B3。 Sirtuins是一群NAD+-dependent deacetylase,其中SIRT1具有延長生物體壽命的能力。FK866是NAD+合成救援路徑中nicotinamide phosphoribosyltransferase (NAMPT)的抑制劑,可以降低細胞內NAD+濃度。本研究的目的在於釐清CR是否藉由增加細胞內的NAD+濃度,進而活化SIRT1活性,而能延長細胞壽命。利用人類Hs68細胞培養在含低濃度葡萄糖的培養基(glucose restriction; GR)來模擬CR,我們比較GR、NAD+及FK866對細胞的壽命及細胞內NAD+濃度的影響,並探討FK866對細胞的作用是否被GR及在培養基中添加NAD+所拮抗。細胞壽命(replicative lifespan)以累積性生長曲線來測定,senescence associated β-galactosidase (SA-βG)活性染色則作為細胞衰老的生物標記,細胞內NAD+的濃度以酸萃取結合酵素循環呈色法測定,SIRT1的活性以商業化的試劑組或以西方墨點法及免疫沉澱法偵測p53的乙醯化程度來測定。結果發現GR可以顯著的增加細胞內NAD+濃度,進而活化SIRT1並延長細胞的壽命。而添加NAD+亦可顯示與GR相似的作用。相反的,處理FK866則造成細胞內NAD+濃度顯著的下降,並且縮短細胞壽命及增加SA-βG活性。重要的是,FK866所誘發的NAD+降低、細胞壽命縮短及SIRT1活化等作用,皆可有效的被GR及添加NAD+所拮抗。此結果顯示細胞內NAD+濃度的增加,在CR延長生物體壽命機制中扮演重要角色。
Caloric restriction (CR) can extend the lifespan of organisms. Nicotinamide adenine dinucleotide (NAD+) is one of bioactive from of vitamin B3. Sirtuins is a protein family called NAD+-dependent deacetylase, which is considered as a longevity protein. FK866 is an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), which is the rate limiting enzyme in the salvage pathway of NAD+ synthesis from nicotinamide and has ability to decrease intracellular NAD+ level. In this study, we examined whether CR can increase intracellular NAD+ levels, and then activate SIRT1 and extend replicative lifespan of human Hs68 cells. Using cells cultured at lower levels of glucose than normal level of glucose in medium (glucose restriction; GR) to mimic CR, we compared the effects of GR, NAD+ and FK866 on cell lifespan, intracellular NAD+ levels, SIRT1 activity and senescence associated -galactosidase (SA-G) activity. We also examined whether the effects of FK866 on Hs68 cells can be antagonized by GR and adding NAD+ into the culture medium. The lifespan of cells was measured as the cumulated growth curve of population doubling levels. The biomarker of cell senescence was detected by determination of senescence associated -galactosidase (SA-G) activity using X-Gal staining. Intracellular NAD+ was determined by an acid extraction method and followed by an enzymatic cycling method. SIRT1 activities were determined by SIRT1 Direct Fluorescent Screening Assay Kit or used p53 acetylation to represent cellular activities of SIRT1. The results showed that GR (>5day) could significantly increase NAD+ levels in cells, activated SIRT1 activity, and extended the lifespan of Hs68 cells. Add NAD+ in to the medium showed with similar effects as GR. Oppositely, FK866 has abilities to reduce intracellular NAD+ levels, shorten the cells lifespan, decrease SIRT1 activity, and increase SA-βG activity. Importantly, all of these effects of FK866 on Hs68 cells can be effectively blocked by GR or adding NAD+ into the medium. The results demonstrated that increase of intracellular NAD+ level plays a crucial role in the mechanism of CR-extended lifespan of human Hs68 cells.
中文摘要........................................................................................................................ii
英文摘要.......................................................................................................................iii
目錄...............................................................................................................................v
縮寫檢索表....................................................................................................................1
圖表目錄........................................................................................................................3

一、前言........................................................................................................................5
二、文獻回顧................................................................................................................7
1. 能量限制...........................................................................................................7
2. SIRT1..................................................................................................................8
3. NAD+..................................................................................................................9
4. 細胞老化模式.................................................................................................12
三、實驗架構................................................................................................................13
四、材料與方法............................................................................................................14
1. 藥品試劑.........................................................................................................14
2. 細胞解凍及保存.............................................................................................15
3. 細胞毒性及細胞生長之檢測.........................................................................15
3.1 細胞存活率檢測.......................................................................................15
3.2 細胞生長檢測...........................................................................................15
4. 細胞內NAD+ 濃度測定................................................................................17
5. 細胞壽命(replicative lifespan)檢測................................................................18
6. 細胞老化相關的β-半乳糖苷酶(SA-G)活性檢測....................................18
7. 細胞內SIRT1活性測定................................................................................20
7.1 以SIRT1 kit測定活性..............................................................................20
7.2 以Western blotting測定細胞中acetyl p53代表SIRT1活性...................21
7.3 以免疫沉降法測定acetyl p53代表SIRT1活性......................................24
8. 統計分析.........................................................................................................24
五、結果........................................................................................................................25
1. GR、NAD+及FK866對細胞存活率之影響.................................................25
2. GR、NAD+及FK866對細胞生長之影響.....................................................25
3. GR及NAD+拮抗FK866所誘發的細胞生長抑制作用................................26
4. GR、NAD+及FK866對細胞內NAD+濃度的影響......................................26
5. GR及NAD+拮抗FK866降低細胞內NAD+濃度的作用.............................27
6. GR、NAD+及FK866對細胞壽命的影響及拮抗的作..................................27
7. GR及NAD+拮抗FK866誘發之細胞衰老形態及密度降低的情形............28
8. GR及NAD+拮抗FK866增加SA-G活性染色的情形............................28
9. GR、NAD+與FK866對SIRT1活性的影響及拮抗的作用
—以SIRT1活性套組測定.................................................................................29
10. GR及NAD+拮抗FK866對SIRT1活性的影響
—以西方墨點法測定acetyl p53/p53.................................................................29
11. GR及NAD+拮抗FK866對SIRT1活性的影響
—以免疫沉澱法測定acetyl p53/p53...................................................................30
12. GR、NAD+與FK866對SIRT1蛋白表現的影響..............................................30
六、討論........................................................................................................................31
七、結論.......................................................................................................................36
八、圖表.......................................................................................................................37
九、參考文獻...............................................................................................................52

Alderman JD, Pasternak RC, Sacks FM, Smith HS, Monrad ES, Grossman W. (1989)
Effectof a modified, well-tolerated niacin regimen on serum total cholesterol, high
density lipoprotein cholesterol and the cholesterol to high density lipoprotein ratio.
Am. J. Cardiol. 64(12):725-729.

Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, Manchester
JK, Gordon J., Sinclair DA. (2002) Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol. Chem;277(21):18881-18890.

Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. (2003)
Nicotinamide and PNC1 govern lifespan extension by calorie restriction in
Saccharomyces cerevisiae.Nature;423:181-185.

Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M.(2002) Inhibition of
Silencing and accelerated aging by nicotinamide, a putative negative regulator of
yeast Sir2 and human SIRT1. J Biol. Chem.;277 (47):45099-45107.

Bogan KL, Brenner C. (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 28:115-30.

Bordone L, Guarente L. (2005)Calorie restriction, SIRT1 and metabolism:
understanding longevity. Nat. Rev. Mol. Cell Biol;6(4):298-305

Brachmann C, Sherman J, Devine S, Cameron E, Pillus L, et al. (1995) The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle
progression, and chromosome stability. Genes Dev 9: 2888–2902.

Brody T. Nutritional biochemistry, 2nd ed., Academic Press, NY (1999), pp. 593-603.

Brunet A, Sweeney L, Sturgill J, Chua K, Greer P, et al. (2004) Stress-dependent
regulation of FOXO transcription factors by the SIRT1 deacetylase. Science
303: 2011–2015.

Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics.Trends Mol Med 13:64–71.

Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM,
Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. (2009) Caloric
restriction delays disease onset and mortality in rhesus monkeys. Science.
325:201–204.

Cooper T, Mockett R, Sohal B, Sohal R, Orr W (2004) Effect of caloric restriction on
life span of the housefly, Musca domestica. FASEB J 18:1591–1593.

Cruzen C, Colman RJ. (2009) Effects of caloric restriction on cardiovascular aging in
non-human primates and humans. Clin Geriatr Med. 25:733–743.

Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelly C, Medrano EE, Linskens M,
Rubeji I, Pereira-Smith O, Peacocke M, Campisi J. (1995) A biomarker that
Identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl.
Acad. Sci.92:9363-9367.

Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9:285–290.

Egger G, Liang G, Aparicio A, Jones P. (2004) Epigenetics in human disease and
prospects for epigenetic therapy. Nature.429:457–463.

Forster M, Morris P, Sohal R (2003) Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J 17: 690–692.

Frye RA. (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like
proteins. Biochem. Biophys. Res. Commun.;273(2):793-798.

Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1
through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673.

Guarente L. (2000) Sir2 links chromatin silencing, metabolism, and aging. Gene Develop;14:1021-1026.

Gurante, L. and Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature. 408: 255-262.

Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 5:253–295.

Hayflick L, Moorehead PS. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res.25:585-621.

Holloszy JO, Fontana L. (2007) Caloric restriction in humans. Exp Gerontol.
42:709–712.

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE,
Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. (2003) Small molecule
activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature ;
425(6954):191-196.

Huang J, Gan Q, Han L, Li J, Zhang H, et al. (2008) SIRT1 overexpression
antagonizes cellular senescence with activated ERK/S6k1 signaling in human
diploid fibroblasts. PLoS One 3: e1710.

Hu Y, Liu J, Wang J, Liu Q.(2011) The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic Biol Med;51(2):250-6
.
Imai SI, Armstrong CM, Kaeberlein M, Guarente L.(2002) Transcriptional silencing
and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature
403:795-800.

Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108.

Koubova J, Guarente L. (2003) How does calorie restriction work? Genes Develop;17:313-321.

Kouzarides T. (2007) Chromatin modifications and their function. Cell. 128:693–705.

Langley E, Pearson M, Faretta M, Bauer U, Frye R, et al. (2002) Human SIR2
deacetylates p53 and antagonizes PML/p53-induced cellular senescence.
EMBO J 21: 2383–2396.

Lin SJ, Defossez PA, Guarente L. (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science; 289: 2126-2128.

Lin SJ, Kaeberlein M, Andlis AA, Sturtz LA, Desossez PA, Culotta VC, Fink GR, Guarente L.(2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration;418:344-348.

Lin SJ, Ford E, Haigis M,. Liszt G, Guarente L. (2003) Calorie restriction extends yeast life span by lowering the leverl of NADH; Genes Develop. 18:12-16.

Lin SJ, Ford E, Haigis M, Liszt G, Guarente L.(2004) Calorie restriction extends
yeast life span by lowering the level of NADH. Genes Dev;18(1):12-16

Li Y, Daniel M, Tollefsbol TO. (2011) Epigenetic regulation of caloric restriction in aging. BMC Med. Aug 25; 9:98.

Li Y, Liu L, Tollefsbol T (2010) Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J 24: 1442–1453.

Li Y, Tollefsbol T. (2011) p16INK4a Suppression by Glucose Restriction Contributes to Human Cellular Lifespan Extension through SIRT1-Mediated Epigenetic and Genetic Mechanisms. PLoS ONE 6(2): e17421.

Li Y, Tollefsbol TO. (2009). Dietary effect on epigenetics during the aging process New York: Springer-Verlag; pp. 407–416.

Luo J, Nikolaev A, Imai S, Chen D, Su F, et al. (2001) Negative control of p53
by Sir2alpha promotes cell survival under stress. Cell 107: 137–148.

Masoro EJ. (2000) Caloric restriction and aging: an update. Exp. eronto.355:299-305.

Masoro E (2005) Overview of caloric restriction and ageing. Mech Ageing Dev
126: 913–922.

Matuoka K, Chen KY, Takenawa T.(2001) Rapid reversion of aging phenotypes by
nicotinamide through possible modulation of histone acetylation. Cell Mol. Life
Sci.;58:2108-2116.

McCay C, Crowell M, Maynard L (1989) The effect of retarded growth upon the
length of life span and upon the ultimate body size. 1935. Nutrition 5:155–171;
discussion 172.

Mcfarland GA, Holliday R. (1994) Retardation of the senescence of cultured human
diploid fibroblasts by carnosine. Exp. Cell Res.212:167-175.

Merry B (2002) Molecular mechanisms linking calorie restriction and longevity.
Int J Biochem Cell Biol 34: 1340–1354.

Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E, Smith MT. (2005) The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet;1(6) 689-694.

Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, et al. (2004) Sirt1
promotes fat mobilization in white adipocytes by repressing PPAR-gamma.
Nature 429: 771–776.

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature; 434 (7029):113-118.

Roth GS, Ingram DK, Lane MA. (2001) Caloric restriction in primates and relevance
to humans. Ann. N.Y. Acad. Sci; 928:305-315.

Sinclair DA. (2005) Toward a theory of caloric restriction and longevity regulation.
Mech Ageing Dev. 126:987–1002.

Sohal R, Weindruch R. (1996) Oxidative stress, caloric restriction, and aging. Science.
273:59–63

Tominaga K, Olgun A, Smith JR, Pereira-Smith OM. (2002) Genetics of cellular
senescence. Mech. Ageing Develop; 123:927-936.

Vaziri H, Dessain S, Ng Eaton E, Imai S, Frye R, et al. (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

Weindruch R, Walford RL. (1988) The Retardation of Aging and Disease by Dietary
Restriction. Springfield, IL: Charles C Thomas; p.436.

Yang NC, Jeng KCG, Ho WM, Chou SJ, Hu ML, (2000) DHEA inhibits cell growth
and induces apoptosis in BV-2 cells and the effects are inversely associated with glucose concentration in the medium. J. Steroid Biochem. Mol. Biol;75:159-66.

Yang NC, Hu ML (2004) A fluorimetric method using fluorescein di-beta-D-galactopyranoside for quantifying the senescence-associated beta-galactosidase activity in human foreskin fibroblast Hs68 cells. Anal Biochem
325:337–343.

Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells.Exp Gerontol 40:813–819.

Yang NC, Song TY, Chen MY, Hu ML. (2011) Effects of 2-deoxyglucose and dehydroepiandrosterone on intracellular NAD(+) level, SIRT1 activity and replicative lifespan of human Hs68 cells. Biogerontology;12(6):527-36.

Zerez CR, Lee SJ, Tanaka KR. (1987) Spectrophotometric determination of oxidized
and reduced pyridine nucleotides in erythrocytes using a single extraction procedure. Anal. Biochem;164:367-373.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top