[1] A. Italia et al., “A silicon bipolar transmitter frond-end for 802.11a and HIPERLAN2 wireless LANs,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1451–1459, July 2005.
[2] H. D. Lee, C.-H. Kim, and S. Hong, “A SiGe BiCMOS transmitter module for IMT2000 applications,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 8, pp. 371-373, Aug. 2004.
[3] M. Zargari et al., “A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1688–1694, Dec. 2002.
[4] H. O. Elwan and M. Ismail, “Digitally programmable decibel-linear CMOS VGA for low-power mixed-signal applications,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 5, pp. 388-398, May 2000.
[5] S. Otaka, H. Tanimoto, S. Watanabe, and T. Maeda, “A 1.9-GHz Si-bipolar variable attenuator for PHS transmitter,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1424–1429, Sep. 1997.
[6] H. D. Lee, K. A. Lee, and S. Hong, “A wideband CMOS variable gain amplifier with an exponential gain control,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1363-1373, June 2007.
[7] F. Carrara and G. Palmisano, “High-dynamic-range VGA with temperature compensation and linear-in-dB gain control,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 2019–2024, Oct. 2005.
[8] S. Otaka, G. Takemura, and H. Tanimoto, “A low-power low-noise accurate linear-in-dB variable-gain amplifier with 500-MHz bandwidth,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1942–1948, Dec. 2000.
[9] C. D. Presti, F. Carrara, and G. Palmisano, “Variable-gain up-converter with current reuse for 5-GHz WLAN applications,” Analog Integrated Circuits and Signal Processing, vol. 51, no. 1, pp. 51–54, Apr. 2007.
[10] T.-M. Chen et al., “A low-power fullband 802.11a/b/g WLAN transceiver with on-chip PA,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 983–991, Feb. 2007.
[11] P. Zhang et al., “A single-chip dual-band direct-conversion IEEE 802.11a/b/g WLAN transceiver in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1932–1939, Sep. 2005.
[12] B. Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp.1412-1413, Sept. 1997.
[13] P. R. Gray, P. J. Hurst, S. H. Levis, and R. G. Meyer, Analysis and design of analog integrated circuits, New York: John Willey & Sons, 2001.
[14] B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. sc-3, no. 4, pp.365-373, Dec. 1968.
[15] F. Corsi, C. Marzocca, and G. Matarrese, “On impedance evaluation in feedback circuits,” IEEE Trans. Educ., vol. 45, no. 4, pp. 371-379, Nov. 2002.
[16] C. C. Meng and T.-H. Wu, “Compact 5.2-GHz GaInP/GaAs HBT Gilbert upconverter using lumped rat-race hybrid and current combiner,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 688-690, Oct. 2005.
[17] C. D. Hull and G. B. Meyer, “Principles of monolithic wideband feedback amplifier design,” Int. J. High Speed Electron., vol. 3, pp. 53-93, Feb. 1992.
[18] R. G. Meyer and R. A. Blauschild, “A 4-terminal wide-band monolithic amplifier,” IEEE J. Solid-State Circuits, vol. sc-16, no. 6, pp.634-638, Dec. 1981.
[19] R. G. Meyer, R. Eschenbach, and R. Chin, “A wide-band ultralinear amplifier from 3 to 300MHz,” IEEE J. Solid-State Circuits, vol. sc-9, no. 4, pp.167-175, Aug. 1974.
[20] S.-S. Lu et al., “The determination of S-parameters from the poles of voltage-gain transfer function for RF IC design,” IEEE Trans. Circuit and Systems-I, vol. 52, no. 1, pp. 191-199, Jan. 2005.
[21] M.-C. Chiang et al., “Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp.694-701, Jun. 2002.
[22] J.-S. Syu and C. C. Meng, “2.4/5.7 GHz dual-band high linearity Gilbert upconverter utilizing bias-offset TCA and LC current combiner,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 876-878, Dec. 2007.
[23] A. A. Abidi, “Direct-convertion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399-1410, Dec. 1995.
[24] J. Choma, Jr, “A three-level broad-banded monolithic analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-16, no. 4, pp. 392-399, Aug. 1981.
[25] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1329-1337, Sept. 2000.
[26] V. Puyal et al., “A DC-100 GHz frequency doubler in InP DHBT technology,” in IEEE MTT-S Int. Dig., Fort Worth, TX, 2004, pp. 167–170.
[27] A. W. Buchwald et al., “A 6-GHz integrated phase-locked loop using AlGaAs/GaAs heterojunction bipolar transistors,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1752–1762, Dec. 1992.
[28] R. Magoon et al., “A singlechip quad-band (850/900/1800/1900 MHz) direct conversion GSM/GPRS RF transceiver with integrated VCOs and franctional-N synthesizer,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1710–1720, Dec. 2002.
[29] 吳宗翰, “利用金氧半場效電晶體,鍺化矽電晶體,和磷化銦鎵/砷化鎵異質接面電晶體技術之射頻吉伯特混頻器及接收機系統架構,” 交通大學博士論文, 2007.[30] T. H. Wu et al., “GaInP/GaAs HBT sub-harmonic Gilbert mixers using stacked-LO and leveled-LO topologies,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 880-889, May. 2007.
[31] T. H. Wu and C. C. Meng, “10-GHz highly symmetrical sub-harmonic Gilbert mixer using GaInP/GaAs HBT technology,” IEEE Microw. Wireless Comp. Lett., vol. 17, no. 5, pp. 370-372, May. 2007.