跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭凱中
研究生(外文):CHENG, KAI-CHUNG
論文名稱:LTE-A同頻雙重連線網路中具服務品質保證之無線資源管理機制
論文名稱(外文):QoS-Guaranteed Radio Resource Management in LTE-A Co-channel Networks with Dual Connectivity
指導教授:黃仁竑黃仁竑引用關係
指導教授(外文):HWANG, REN-HUNG
口試委員:黃仁竑潘仁義連紹宇
口試委員(外文):HWANG, REN-HUNGPAN, JEN-YILIEN, SHAO-YU
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:異質網路服務基地台選擇無線資源配置雙重連線服務品質小型基地台範圍擴展近乎空白子訊框
外文關鍵詞:Heterogeneous NetworkCell SelectionResource AllocationDual ConnectivityQuality of ServiceCell Range ExpansionAlmost Blank Subframe
相關次數:
  • 被引用被引用:1
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著行動通訊技術邁向第五代行動通訊(5G),標準雖仍持續制訂中,但在提升網路頻譜的發展上,3GPP Release 10已提出異質網路架構的應用,藉由佈署不同發送功率大小的基地台,藉此提高頻譜在空間中的使用效率。然而,在異質網路的發展上也面臨著許多挑戰,包含服務基地台選擇、無線資源配置、基地台間干擾協調技術等。為了提升小型基地台運行效率,3GPP Release 12提出一個雙重連線技術,允許一台用戶裝置同時連線兩個不同的基地台,增加了無線資源利用的彈性。另一方面,用戶裝置在不同的服務和乘載上,會有各自不同的頻寬需求,在雙重連線技術下,如何整合跨基地台間的頻寬資源來提升用戶裝置的資料傳輸速率,利用無線資源配置來達到服務品質(QoS)要求將會是一項新的議題。
有鑑於此,本論文研究在同頻雙重連線網路中,基於無線資源管理議題,提出有助於提升服務品質的方法。在無線資源排程方面,我們以最佳化為原則設計Max-min Threshold Scheduler (MTS),考慮整合跨基地台間的頻寬資源,並將每個無線資源區塊(Resource Block)分配給通道品質最好的用戶裝置。為了避免資源分配不均,在基地台選擇機制方面,我們設計HeNB Congestion Indicator (HCI)達到基地台間負載平衡,除了考慮用戶裝置連線品質之外,也評估基地台本身剩餘多少資源。再者,在干擾協調機制方面,結合小型基地台範圍擴展(CRE)和近乎空白子訊框(ABS),我們設計Q-learning方法依環境條件動態調整ABS比率,避免不必要的無線資源浪費。
模擬結果顯示在服務品質滿足率上,我們的MTS排程相較Proportional Fairness排程提升了33.31%;我們的HCI基地台決選擇機制相較SINR基地台選擇機制提升了4.17%;我們的Q-learning干擾協調機制相較Static ABS則是提升了2.18%;最後,我們結合雙重連線、CRE、ABS的應用,提升鄰近基地台訊號交接處的用戶裝置5.34%滿足率。

In recent years, with the mobile communication technology towards 5G, the standards of mobile communication continue to evolve. In the Release 10 of 3GPP, the heterogeneous network (HetNet) architecture was proposed to increase the spectrum efficiency by deploying base stations with different transmission power. However, the development of HetNet still facing many challenges, including cell selection, resource allocation, inter-cell interference coordination and so on. In order to improve the efficiency of the small cells, 3GPP Release 12 proposed a Dual Connectivity technology that allows one user equipment to connect two different base stations at the same time, to increase the flexibility of resource utilization. On the other hand, different user equipment tends to have different bandwidth requirements. In Dual Connectivity, a challenging issue is how to integrate resources from two stations to enhance the quality of service (QoS) as well as data transfer rate of each user equipment.
In this thesis, we proposed novel resource management mechanisms to improve the quality of service of user equipment in the co-channel dual connectivity network. In terms of resource allocation, we designed the Max-min Threshold Scheduler (MTS) which, in principle, allocates a resource block to the user equipment with the best channel quality while considering the issues of inter-cell resource allocation and the QoS requirement of each user equipment. In order to balance the load of different cells, we designed a novel cell selection scheme based on the HeNB Congestion Indicator (HCI) which considers not only the signal quality of user equipment but also the remaining resources of each base station. To improve the QoS of cell edge user equipment, Cell Range Expansion (CRE) and the Almost Blank Subframe (ABS) were proposed in 3GPP. In this thesis, based on Q-learning, we designed an adaptive mechanism which dynamically adjusts the ABS ratio according to the environmental conditions to improve resource utilization.
The ultimate goal of the proposed mechanisms is to improve the quality of service satisfaction rate of user equipment. Our simulation results showed that our MTS scheduler is able to achieve 31.44% higher rate than the Proportional Fairness scheduler; our HCI cell selection scheme yields 2.98% higher rate than the SINR cell selection scheme; the QoS satisfaction rate of our Q-learning dynamic ABS scheme is 4.06% higher than that of the Static ABS scheme. Finally, by integrating the mechanisms of Dual Connectivity, CRE and ABS, the QoS satisfaction rate of cell edge user equipment can be increased by 10.76% as compared to the traditional approach.

緒論
1.1 研究背景
1.2 研究動機及目的
1.3 研究貢獻
1.4 論文架構
第二章 相關文獻
2.1 雙重連線
2.2 基地台選擇與干擾協調機制
2.3 無線資源排程
2.4 流量模組
第三章 系統架構與設計
3.1 異質網路頻譜配置
3.2 網路環境
3.3 無線資源配置
3.3.1 訊框結構
3.3.2 資源排程
3.4 服務品質
第四章 研究方法
4.1 Max-min Threshold Scheduler (MTS)資源排程機制
4.1.1 Max-min排程
4.1.2 Threshold:資源優先權及限制
4.1.3 MTS流程
4.2 HeNB Congestion Indicator (HCI)基地台選擇機制
4.2.1 HeNB Congestion Indicator基地台選擇
4.2.2 分散式決策時機
4.2.3 HCI流程
4.3 Q-learning dynamic ABS 干擾協調機制
4.3.1 強化學習(Reinforcement Learning):Q-learning
4.3.2 Q-learning dynamic ABS
第五章 模擬分析
5.1 環境參數
5.2 模擬方案與數據分析
5.2.1 驗證HCI服務基地台選擇
5.2.2 驗證Max-min結合Threshold機制
5.2.3 驗證PF無線資源排程
5.2.4 驗證Q-learning dynamic ABS
5.2.5 驗證雙重連線結合CRE/ABS應用
第六章 結論與未來展望
第七章 參考文獻

[1]A. Khandekar, N. Bhushan, J. Tingfang, and V. Vanghi, “LTE-Advanced: Heterogeneous networks,” in Wireless Conference (EW), 2010 European, 2010, pp. 978-982.
[2]I. Guvenc, M.-R. Jeong, I. Demirdogen, B. Kecicioglu, and F. Watanabe, “Range Expansion and Inter-Cell Interference Coordination (ICIC) for Picocell Networks,” IEEE Vehicular Technology Conference (VTC Fall), Sep. 2011, pp.1-6.
[3]3GPP standardization, “Study on Small Cell Enhancements for E-UTRA and E-UTRAN-Higher Layer Aspects,” TR 36.842, v12.0.0, Dec. 2013.
[4]J. Oh and Y. Han, “Cell Selection for Range Expansion with Almost Blank Subframe in Heterogeneous Networks,” 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2012, pp. 653-657.
[5]J. Wang, J. Liu, D. Wang, J. Pang, and G. Shen, “Optimized Fairness Cell Selection for 3GPP LTE-A Macro-Pico HetNets,” 2011 IEEE Vehicular Technology Conference (VTC Fall), Sep. 2011, pp. 1-5.
[6]S. C. Jha, K. Sivanesan, R. Vannithamby and A.T. Koc, “Dual Connectivity in LTE Small Cell Networks,” 2014 IEEE Globecom Workshops, Dec. 2014, pp. 1205-1210.
[7]J. Zhang, Q. Zeng, T. Mahmoodi, A. Georgakopoulos, and P. Demestichas, “LTE Small Cell Enhancement by Dual Connectivity,” Wireless World Research Forum, Working Group C White Paper, Nov. 2014.
[8]Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-A: evolution toward integration of local area and wide area systems,” IEEE Wireless Commun., vol. 20, no. 1, pp. 12–18, Feb. 2013.
[9]Jin Liu, Jianguo Liu, and Huan Sun, “An Enhanced Power Control Scheme for Dual Connectivity,” IEEE 80th Vehicular Technology Conference (VTC Fall), Vancouver, BC, Sep. 2014, pp. 1-5.
[10]A. Zakrzewska, D. Lopez-Perez, S. Kucera, and H. Claussen, “Dual connectivity in LTE HetNets with split control and user plane,” 2013 IEEE Globecom Workshops, Dec. 2013, pp. 391–396.
[11]Y. Ramamoorthi and A. Kumar, “Performance comparison of dual connectivity with CoMP in heterogeneous cellular networks,” Communication Systems and Networks (COMSNETS), 2017 9th International Conference on, Jan. 2017, pp. 1-6.
[12]Z. Lei and C. Gang, “QoS_aware user association for load balancing in heterogeneous cellular network with dual connectivity,” Computer and Communications (ICCC), 2016 2nd IEEE International Conference on, Oct. 2016, pp. 1-6.
[13]T. Qu, D. Xiao and D. Yang, “A novel cell selection method in heterogeneous LTE-advanced systems,” 3rd IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT), Oct. 2010, pp. 510-513.
[14]C. Qian, S. Zhang and W. Zhou, “A Novel Cell Selection Strategy with Load Balancing for Both Idle and RRC-Connected Users in 3GPP LTE Network,” 2012 International Conference on Wireless Communications & Signal Processing (WCSP), Oct. 2012, pp. 1-6.
[15]T. Qu, D. Xiao, D. Yang, W. Jin, and Y. He, “Cell selection analysis in outdoor Heterogeneous Networks,” 3rd international Conference on Advanced Computer Theory and Engineering (ICACTE), Aug. 2010, pp. V5-554 - V5-557.
[16]A. Daeinabi, K. Sandrasegaran, and X. Zhu, “Performance Evaluation of Cell Selection Techniques for Pico cells in LTE-Advanced Networks," 10th international Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTiCON), May 2013, pp.1-6.
[17]J. Sangiamwong, Y. Saito, N. Miki, T. Abe, S. Nagata, and Y. Okumura, “Investigation on Cell Selection Methods Associated with Inter-cell Interference Coordination in Heterogeneous Networks for LTE-Advanced Downlink,” European Wireless, Apr. 2011, pp. 1-6.
[18]P. Tian, H. Tian, J. Zhu, L. Chen, and X. She, “An adaptive bias configuration strategy for range extension in lteadvanced heterogeneous networks,” IET international Conference on Communication Technology and Application (ICCTA), Oct. 2011, pp. 336-340.
[19]A. Kamal, and V. Mathai, “A Novel Cell Selection method for LTE HetNet,” International Conference on Communication and Signal Processing, April 3-5, 2014, India.
[20]B. A. Yasir, G. Su, and N. Bachache, “Range Expansion for Pico Cell in Heterogeneous LTE- A Cellular Networks,” 2nd international Conference on Computer Science and Network Technology, Dec. 2012, pp. 1-6.
[21]M. A. AboulHassan, E. A. Sourour, and S. E. Shaaban, “Novel cell selection algorithm for improving average user's effective data rate in LTE HetNets,” Computers and Communication (ISCC), 2014 IEEE Symposium on, Jun. 2014, pp. 1-6.
[22]A.I.A. Jabbar and F. Y. Abdullah, “Long Term Evolution (LTE) Scheduling Algorithms in Wireless Sensor Networks (WSN),” International Journal of Computer Applications (0975 - 8887)Volume 121 - No.10, Jul. 2015, pp. 12-16.
[23]R.D. Trivedi, M.C. Patel, “Comparison of Different Scheduling Algorithm for LTE,” International Journal of Emerging Technology and Advanced Engineering, vol. 4, no. 5, May 2014, pp.1-6.
[24]M.H. Habaebi, J. Chebil, A.G. Al-sakkaf, and T.H. Dahawi, “Comparison between Scheduling Techniques in Long Term Evolution,” IIUM Engineering Journal, Vol. 14, 2013
[25]Z. Sun, C. Yin, and G. Yue, “Reduced-Complexity Proportional Fair Scheduling for OFDMA Systems,” Communications, Circuits and Systems Proceedings, 2006 International Conference on, Jun. 2006, pp. 1-5.
[26]M. Ayhan, Y. Zhao, and H.A. Choi, “Utilizing Geometric Mean in Proportional Fair Scheduling: Enhanced Throughput and Fairness in LTE DL,” Global Communications Conference (GLOBECOM), 2016 IEEE, Dec. 2016, pp. 1-6.
[27]Z. Huang, J. Liu, Q. Shen, J. Wu, and X. Gan, “A threshold-based multi-traffic load balance mechanism in LTE-A networks,” Wireless Communications and Networking Conference (WCNC), 2015 IEEE, Mar. 2015, pp. 1-6.
[28]H. Tang, P. Hong, and K. Xue, “HeNB-aided virtual-handover for range expansion in LTE femtocell networks,” Journal of Communications and Networks, Vol. 15, Issue 3, Jul. 2013, pp. 312-320.
[29]D. Lopez-Perez and X. Chu, “Inter-Cell Interference Coordination for Expanded Region Picocells in Heterogeneous Networks,” 20th International Conference on Computer Communications and Networks (ICCCN), Jul. 2011, pp. 1-6.
[30]R1-101873, “DL Pico-Macro HetNet Performance: Cell Selection,” Alcatel-Lucent Shanghai Bell, Alcatel-Lucent, 3GPP TSG-RAN WG1 #60bis, Beijing, China, April 12-16, 2010.
[31]X. Chen, H. Yi, H. Luo, H. Yu, and H. Wang, “A novel CQI calculation scheme in LTE\LTE-A systems,” in Wireless Communications and Signal Processing (WCSP), 2011 International Conference on, Nov. 2011, pp. 1-5.
[32]H. Nam, K.H. Kim, B.H. Kim, D. Calin, and H. Schulzrinne, “Towards dynamic QoS-aware over-the-top video streaming,” World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th International Symposium on, Jun. 2014, pp.1-9.
[33]A. Kamath, O. Palmon, and S. Plotkin, “Routing and Admission Control in General Topology Networks with Poisson Arrivals,” Journal of Algorithms, Vol. 27(2), May 1998, pp. 236-258.
[34]L. Gao, H. Tian, P. Tian, J. Zhang, and M. Wang, “A distributed dynamic ABS ratio setting scheme for macro-femto heterogeneous networks,” Communications Workshops (ICC), 2013 IEEE International Conference on, Jun. 2013, pp. 1-5.
[35]M. Simsek, M. Bennis, and A. Czylwik, “Dynamic Inter-Cell Interference Coordination in HetNets: A reinforcement learning approach,” Global Communications Conference (GLOBECOM), 2012 IEEE, Dec. 2012, pp. 5446-5450.
[36]Q. Li, H. Xia, Z. Zeng, and T. Zhang, “Dynamic enhanced Inter-Cell Interference Coordination using reinforcement learning approach in Heterogeneous Network,” Communication Technology (ICCT), 2013 15th IEEE International Conference on, Nov. 2013, pp. 1-5.
[37]Vienna LTE-A Downlink System Level Simulator. [Online]. Available: https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/vienna-lte-a-simulators/lte-a-downlink-system-level-simulator/.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊