跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/18 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊毅
研究生(外文):Jiun-Yi Wang
論文名稱:利用親本子代三元體家庭之概似函數建立數量性狀基因座定位之穩健相關檢定
論文名稱(外文):Likelihood-based robust association tests for mapping quantitative trait loci using parent-offspring triad data
指導教授:戴政戴政引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:流行病學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:99
中文關鍵詞:三元體家庭傳遞不平衡檢定數量性狀連鎖不平衡遺傳模式干擾參數計分檢定統計量穩健檢定
外文關鍵詞:triad familytransmission/disequilibrium testTDTquantitative traitslinkage disequilibriummode of inheritanceinterference parameterscore testrobust test
相關次數:
  • 被引用被引用:3
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
收集家庭資料進行疾病與標識基因之相關性研究是近年來遺傳流行病學重要的方法之一。利用親本-染病子代三元體家庭,傳遞不平衡檢定 (transmission/ disequilibrium tests, TDT) 在檢定異質親本中特定對偶基因之傳遞不傳遞機率是否相等。這個方法的好處在於不受群體分層和非隨機交配的影響,然檢定本身未考量遺傳模式對統計量檢定力的影響,是其缺點。目前已有文獻指出在一般致病基因頻率不高,若遺傳模式為隱性模式時,TDT的檢定力不佳。由於檢定數量性狀與候選基因之相關性時,遺傳模式仍是一個干擾源。因此本文提出將此干擾源參數化後,利用親本-子代三元體家庭之條件概似函數 (條件於親代交配型和子代性狀) 推得不同遺傳模式下之計分檢定 (score test) 統計量,並提出二個降低遺傳模式干擾的穩健相關檢定作法。根據模擬結果顯示,這二個檢定在不同遺傳模型下,確實維持一定的檢定力。為遺傳模式未知的研究,提供了一個比較穩健的策略選擇。
Family-based association study is a useful approach for detecting linkage and linkage disequilibrium between a disease gene and a marker in genetic analysis. Using case-parent data the transmission/disequilibrium test (TDT) method tests the equality of the transmission and non-transmission probabilities of a particular maker allele from a heterozygous parent. If the null hypothesis is rejected, it indicates that there is linkage and linkage disequilibrium between the studied disease and the marker loci. Though TDT has been shown as an applicable method in linkage study, its test performance is affected by some nuisances such as gene frequencies, mode of inheritance (MOI) of a disease and linkage disequilibrium between loci. For instance, when the disease allele frequency is low and the disease is recessivity inherited , the power performance of TDT is poor. Theoretically, if we know the actual MOI, the MOI can be involved in the analysis. However, in practice we usually have no idea about the disease mode, and that causes a problem that needs to be addressed. Using robust methods in resoling this problem for a binary trait had been studied. In this paper, we are interested in developing robust methods for handling MOI problem for quantitative traits. By means of conditional likelihoods, we constructed score tests for four modes of inheritance. We then developed two robust procedures to cope with the MOI problem in analysis of quantitative traits. Simulation results showed that our methods truly express robustness property when the actual MOI is unknown.
第一章 緒 論 1-1
第一節 連鎖分析 1-2
第二節 相關分析 1-5
第二章 研究背景及文獻回顧 2-1
第一節 遺傳模式對檢定之干擾 2-1
第二節 數量性狀分析方法 2-6
第三節 以傳遞不傳遞訊息建立之數量性狀分析方法 2-8
第三章 分析數量性狀之穩健相關檢定 3-1
第一節 研究動機及研究目的 3-1
第二節 研究方法 3-3
第三節 常態分布假設下之穩健相關檢定 3-7
第四節 分布來自指數族之穩健相關檢定 3-16
第五節 異質群體下穩健相關檢定的調整作法 3-20
第四章 模擬研究 4-1
第一節 數量性狀具常態分布之檢定力分析 4-2
第二節 數量性狀具伽瑪分布之檢定力分析 4-4
第三節 群體分層結構下之檢定力分析 4-5
第五章 討論與建議 5-1
參考文獻 R-1


附錄
附錄I. 數量性狀為常態分布下,隱性、顯性和
累加模式之計分統計量推導 A-1
附錄II. 計算隱性、累加和顯性模式之計分統計
量相關係數 A-8
附錄III. 數量性狀分布為指數族下,隱性、顯性
和累加模式之計分統計量的推導 A-11

表A.1 – A.7 常態分布下,統計量之檢定力模擬 A-18
表B.1 – B.7 伽瑪分布下,統計量之檢定力模擬 A-25
表C.1 – C.8 群體分層下,統計量之檢定力模擬 A-32
1.戴 政 (2002) 遺傳流行病學--基因定位之遺傳設計與分析方法。藝軒,台北。
2.Allison D. (1997) Transmission-disequilibrium tests for quantitative traits. American Journal of Human Genetics, 60: 676-690.
3.Amos C.I. (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. American Journal of Human Genetics, 54: 535-543.
4.Amos C.I. and Elston R.C. (1989) Robust methods for the detection of genetic linkage for quantitative data from pedigrees. Genetic Epidemiology, 6: 349-360.
5.Blackwelder W.C. and Elston R.C. (1985) A comparison of sib-pair linkage tests for disease susceptibility loci. Genetic Epidemiology, 2: 85-97.
6.Clerget-Darpoux F., Bonaiti-Pellie C. and Hochez J. (1986) Effects of misspecifying genetic parameters in lod score analysis. Biometrics, 42: 393-399.
7.Cox D.R. and Hinkley D.V. (1974) Theoretical statistics. Chapman & Hall, London.
8.Devlin B. and Roeder K. (1999) Genomic control for association studies. Biometrics, 55: 997–1004.
9.Drigalenko E. (1998) How sib-pairs reveal linkage. American Journal of Human Genetics, 63: 1242-1245.
10.Edwards A.W.F. (1997) The early history of the statistical estimation of linkage. In: Pawlowitzki I.H., Edwards J.H. and Thompson E.A. (eds) Genetic Mapping Disease Genes. Academic Press. San Diego.
11.Elston R.C. and Stewart J.(1971) A general model for the analysis of pedigree data. Human Heredity, 21: 523-542.
12.Elston R.C., Buxbaum S., Jacobs K.B. and Olson J.M. (2000) Haseman and Elston revisited. Genetic Epidemiology, 19 369-372.
13.Ewens W.J. and Spielman R.S. (1995) The transmission/disequilibrium test: history, subdivision and admixture. American Journal of Human Genetics, 57: 455-464.
14.Falk C.T. and Rubinstein P. (1987) Haplotype relative risk: an easy reliable way to construct a proper control sample for risk calculations. Annals of Human Genetics, 51: 227-233.
15.Forrest W.F. (2001) Weighting improves the ‘New Haseman-Elston’ method. Human Heredity, 52: 47-54.
16.Freidlin B., Podgor M.J. and Gastwirth J.L. (1999) Efficiency robust tests for survival or ordered categorical data. Biometrics, 55: 883-886.
17.Gastwirth J.L. (1966) On the robust procedures. Journal of the American Statistical Association, 61: 929-948.
18.Gastwirth J.L. (1985) The use of maximin efficiency robust tests in combining contingency tables and survival analysis. Journal of the American Statistical Association, 80:380-384.
19.Green J. and Montasser M. (1988) HLA haplotype discordance. Biometrics, 44: 941-950.
20.Haseman L.K. and Elston R.C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behavior Genetics, 2: 3-19.
21.Hodge S.E. and Elston R.C. (1994) Lods, wrods, and mods: the interpretation of lod scores calculated under different models. Genetic Epidemiology, 11: 329-342.
22.International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature, 431: 931-945.
23.Knapp M., Seuchter S.A. and Baur M.P. (1995) Linkage analysis in nuclear families, I. Optimality criteria for affected sib-pair tests. Human Heredity, 44: 37-43.
24.Lander E.S. and Green P. (1987) Construction of multilocus genetic maps in humans. Proceedings of the National Academy of Science USA, 84: 2363-2367.
25.Lee C.H. and Tai J.J. (2005) Regression analysis approaches to combine the QTL information in multiple quantitative traits using sib-pairs data. (manuscript)
26.MacLean C.J, Sham P.C. and Kendler K.S. (1993) Joint linkage of multiple loci for a complex disorder. American Journal of Human Genetics, 53: 353-366.
27.McCullagh P. and Nelder J.A. (1989) Generalized Linear Models. Chapman and Hall. London.
28.Morton N.E. (1955) Sequential test for the detection of linkage. American Journal of Human Genetics, 7: 277-318.
29.Morton N.E.(1956) The detection and estimation of linkage between genes for elliptocytosis and the Rh blood type. American Journal of Human Genetics, 8: 80-96.
30.Morton N.E. and MacLean C.J (1974) Analysis of family resemblance. III. Complex segregation of quantitative trait. American Journal of Human Genetics, 26: 489-503.
31.Ott J. (1992) Strategies for characterising highly polymorphic markers in human gene mapping. American Journal of Human Genetics, 51: 283-290.
32.Ott J. (1999) Analysis of Human Genetic Linkage. The Johns Hopkins University Press. Baltimore.
33.Penrose L.S.(1935) The detection of autosomal linkage in data which consists of pairs of brothers and sisters of unspecified parentage. Annals of Eugenics, 6: 133-138.
34.Pritchard J.K. and Rosenberg N.A. (1999) Use of unlinked genetic markers to detect population stratification in association studies. American Journal of Human Genetics, 65: 220-228.
35.Rabinowitz D.(1997) A transmission disequilibrium test for quantitative trait loci. Human Heredity, 47: 342-350.
36.Reich D.E. and Goldstein D.B. (2001) Detecting association in a case-control study while correcting for population stratification. Genetic Epidemiology, 20: 4–16.
37.Rubinstein P., Walker M., Carpenter C., Krassner J., Falk C. and Ginsberg F. (1981) Genetics of HLA disease associations: The use of the haplotype relative risk (HRR) and the ‘haplo-delta’ (Dh) estimates in juvenile diabetes from three racial groups. Human Immunology, 3: 384.
38.Schaid D.J. and Sommer S.S. (1993) Genotype relative risks: methods for design and analysis of candidate-gene association studies. American Journal of Human Genetics, 53: 1114-1126.
39.Schaid D.J. and Sommer S.S. (1994) Comparison of statistics for candidate-gene association studies using cases and parents. American Journal of Human Genetics, 55: 402-409.
40.Sham P.C. (1998) Statistics in Human Genetics. Arnold. London.
41.Smith C.A.B. (1963) Testing for heterogeneity of recombination fraction values in human genetics. Annals of Human Genetics, 27: 175-182.
42.Spielman R.S., McGinnis R.E. and Ewens W.J.(1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics, 52: 506-516.
43.Spielman R.S. and Ewens W.J. (1996) The TDT and other family-based tests for linkage disequilibrium and association. American Journal of Human Genetics, 59: 983-989.
44.Spielman R.S. and Ewens W.J. (1998) A sibship test for linkage in the presence of association: the sib transmission disequilibrium test. American Journal of Human Genetics, 62: 450-458.
45.Suarez B.K., Rica J.P. and Riech T. (1978) The generalised sib-pair IBD distribution: its use in the detection of linkage. Annals of Human Genetics, 42: 87-94.
46.Suarez B.K. and van Eerdewegh P. (1984) A comparison of three affected-sib-pair scoring methods to detect HLA-linked disease susceptibility genes. American Journal of Medical Genetics, 18: 135-146.
47.Tai J.J. and Hou C.D. (2005) On the combination of transmission/disequilibrium test and mean test for linkage detection using affected sib pairs. Computational Statistics and Data Analysis. (in press)
48.Tai J.J., Hou C.D., Chen K.C. and Wang J.Y. (2005) Joint effects of nuisance parameters on a class of family-based association tests for general disease models. (manuscript)
49.Terwilliger J. and Ott J. (1992) A haplotype-based ‘haplotype relative risk’ approach to detecting allelic association. Human Heredity, 42: 337-346.
50.Wang J.Y., Hou C.D. and Tai J.J. (2005) Incorporating allele sharing and transmission disequilibrium information in linkage analysis using tetrad family data. (manuscript)
51.Weeks D.E. and Lange K. (1988) The affected-pedigree-member method of linkage analysis. American Journal of Human Genetics, 42: 315-326.
52.Weeks D.E. and Lange K. (1992) A moltilocus extension of the affected-pedigree- member method of linkage analysis. American Journal of Human Genetics, 50: 859-868.
53.Whittemore A.S. and Halpern J. (1994a) Probability of gene identity by decent: computation and application. Biometrics, 50: 109-117.
54.Whittemore A.S. and Halpern J. (1994b) A class of tests for linkage using affected pedigree members. Biometrics, 50: 118-127.
55.Wright F.A. (1997) The phenotypic difference discards sib-pair QTL linkage information. American Journal of Human Genetics, 60: 740-742.
56.Xiong M.M., Krushkal J. and Boerwinkle E. (1998) TDT statistics for mapping quantitative trait loci. Annals of Human Genetics, 65: 431-452.
57.Zheng G., Freidlin B. and Gastwirth J.L. (2002) Robust TDT-type candidate-gene association tests. Annals of Human Genetics, 66: 145-155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top