跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇朝正
研究生(外文):Chau-Jeng Su
論文名稱:熔融還原爐底吹攪拌之水模物理模擬解析
論文名稱(外文):Physical Simulation of Bottom Blowing Stirring inside Smelting Reduction Vessel by Water Modeling
指導教授:周兆民劉世賢劉世賢引用關係
指導教授(外文):Jaw-Min ChouShih-Hsien Liu
學位類別:博士
校院名稱:義守大學
系所名稱:材料科學與工程學系博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:182
中文關鍵詞:熔融還原爐水模混合效率耐火材沖蝕均混時間底吹氣體技術
外文關鍵詞:Mixing EfficiencyMixing TimeGas Bottom Blowing TechniqueRefractory ErosionWater ModelSmelting Reduction Vessel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:888
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了增加鐵水產率,熔融還原爐採用底吹氣體技術來進行鐵渣混拌。其主要功能為增加鐵渣兩相的反應面積,進而提升反應速率。本研究係利用無因次分析來強化冷熱模相似性,並以60%水模模擬實驗,探討氣體底吹條件對熔融還原煉鐵爐鐵相均混時間與爐底耐火材內襯沖蝕之影響,實驗改變底吹單管氣體流量(80、100、120NL/min)、底吹管內徑(6.0、7.5、10.0、12.5、15.0mm)、底吹管數(3、4、5管)及底吹管排列方式等參數。其中,在均混時間試驗方面,利用氯化鉀(KCl)當指示劑,以RO水為鐵水之替代介質。在耐火材沖蝕試驗方面,以水為鐵水之替代介質,並以油壓成型之硼酸試片為耐火材替代物,利用空氣為爐底噴吹氣體來進行耐火材沖蝕模擬試驗。在鐵/渣混合實驗的探討,則固定底吹管數四管,改變底吹單管氣體流量(80~120NL/min)、底吹管內徑(6.0~15.0mm) 及底吹管排列方式等參數。在鐵/渣混合實驗方面,分別以水和錠子油為鐵水和熔渣之替代介質,以瑞相草酚為追蹤劑,探討氣體底吹條件對鐵渣兩相混合之影響。在實驗過程中,分析水相中瑞香草酚濃度變化,代入兩相間質傳速率方程式,即可分辨不同氣體底吹條件下之鐵渣兩相混合程度。
研究結果指出,在冷熱模相似性解析方面,以底吹噴吹進入液體所造成的流體流動為系統,推導出Modified Froude Number、Modified Weber Number、Reynolds Number、Euler Number等為冷熱模相似性重要之無因次群。液相均混試驗結果顯示,除了3管以正三角排列,其最短的均混時間均在底吹管徑為12.5mm時出現,其他排列方式,在任何底吹氣體流量下,最短之均混時間皆為底吹管徑10.0mm。而底吹總氣體流量對於均混時間的關係,大致上隨著底吹總氣體流量增加,均混時間會隨之下降。針對底吹管排列的影響,固定4管的噴吹試驗,除了管徑10.0mm,正三角-中心排列所造成的均混效果優於正四角排列方式。
在攪拌混合效果方面,固定四支底吹管和相同總氣體流量情況下,底吹管內徑10.0mm,所得到的兩相混合程度比其他管徑為較佳。而隨底吹氣體總流量增加時,其兩相混合程度亦隨之增加。另外,在相同底吹管徑和總氣體流量之組合條件下,四支底吹管以正四角對稱排列方式的兩相混合程度高於四支底吹管採正三角-中心排列方式。
在耐火材沖蝕影響部分,試片沖蝕速率隨著底吹管氣體流量減少而降低,即耐火材沖蝕越輕微。在底吹管內徑對試片沖蝕率影響方面,除了四支底吹管以正四角對稱位置排列外,發現試片沖蝕情況最輕微之底吹管內徑為10mm,而其餘管數和不同排列下,則試片沖蝕速率隨底吹管口徑增加而減小。在底吹管數為3~5管範圍內,試片沖蝕速率隨著底吹管數目減少而降低。除了10mm底吹管內徑外,試驗結果顯示底吹管以正三角-中心對稱排列較正四角對稱排列者對試片沖蝕較為輕微。由耐火材的沖蝕行為試驗得知,可分為回擊現象和氣穴沖蝕現象。在回擊現象方面,在管徑範圍7.5mm~15.0mm,隨著管徑減少,氣體流量增加時,其回擊壓力和頻率隨之增加。而管徑6.0mm因噴吹速度過快,造成在回擊的氣泡團要撞擊至底部時,同時會有氣泡往上噴吹而形成新的氣柱,使得將要回擊或正要回擊的氣泡團往上帶動,導致使氣泡團回擊的壓力和頻率減少,但其回擊壓力和頻率只少於管徑7.5mm。氣穴現象方面,隨著底吹管徑的減少和氣體流量的增加,其造成的壓力波和微激流的壓力和頻率隨之增加。此外,小管徑範圍(6.0mm和7.5mm)沖蝕型態以氣穴現象為主,使得產生嚴重的沖蝕結果。
在上述模擬實驗條件範圍內,氣體底吹對液相均混效果、鐵渣相混合效果較佳耐火材與模擬試片沖蝕速率較低的底吹條件組件為:底吹管四管以正四角對稱排列、底吹管總氣體流量為480 NL/min(單管氣體流量為120NL/min)、底吹管內徑10.0mm。
In order to increase the productivity, the gas bottom blowing technique has been applied to mix molten iron/slag inside the ironmaking smelter. The main function of the technique is to increase the interface area between slag and iron, then to enhance the rate of the smelting reduction. Dimensional analysis technique was used to intensify the similarity between the water model and the experimental smelting reduction vessel. Then, the water model experiments were conducted to investigate both the mixing time of the molten iron phase and the erosion of the bottom refractory lining around the tuyere tip inside smelting reduction vessel under different gas bottom-blowing conditions. In two experiments, the major parameters of gas bottom-blowing conditions were the gas flow rate(80~120NL/min), the inside diameter(6.0~15.0mm), the number(3~5pipes), and the placement of the bottom blowing tuyeres. Also, mixing time simulation work is used to simulate liquid iron this model is water, compressed air functions as the bottom-blowing gas, and KC1 was utilized as indicator in the iron mixing time test .Oil-pressed boric acid disks were used as specimens to simulate the refractory lining around the tuyere tip for refractory erosion test. For the mixing degree of molten iron/slag experiments, the major parameters of the gas bottom blowing were the inside diameter of tuyere, the total gas flow rate, the placement of the bottom blowing tuyeres. Also, water and spindle oil were selected to represent liquid iron and molten slag inside the smelter, respectively. And, thymol was used as the tracer of mass transfer between the two phases. Based on the mass transfer rate equation with the analyzed data of thymol concentration during experiments, the mixing degree could be distinguished for different blowing conditions.
The result of research indicated that the important dimensionless groups for the similarity between the cold model and the ESRV are Modified Froude Number, Modified Weber Number, Reynolds Number, and Euler Number. The mixing time of molten iron phase experimental results indicate that in the cases of four tuyeres in the square-corner and triangle-corner-center placements, 10.0 mm tuyeres yield the shortest mixing time under different total gas flow rates. In the case of five tuyeres in the square-corner-center placement, 10.0 mm tuyeres also have the shortest mixing time under total gas flow rates of 400 NL/min and 500 NL/min. However, 12.5 mm tuyeres have the shortest mixing time under a total gas flow rate of 600 NL/min. In addition, in the case of three tuyeres in the triangle-corner placement, 12.5 mm tuyeres have the shortest mixing time under different total gas flow rates. When the gas flow rate per tuyere is 80 NL/min, the fewer the tuyeres, the shorter the mixing time. Depending on tuyere placement, some of the energy injected by the gas may be counteracted. In contrast, a tuyere placement without a center tuyere may yield better mixing effects. In experiments of the refractory erosion, it was indicated that the erosion rate of specimens around tuyere tip decreased with decreasing the bottom-blowing gas flow rate. The lowest erosion rate of boric acid specimens is at 10 mm inner diameter tuyeres in the case of four tuyeres in the square-corner placement. In all experiments except the above case, the lowest erosion rate of boric acid specimens was found at 15 mm inner diameter tuyere. The erosion rate of specimens around tuyere tip decreased with decreasing the number of the bottom blowing tuyere ranging from 3 to 5 tuyeres. It also was shown that the erosion rate of the triangle-corner-center placement case is lower than the square-corner placement case at the same bottom blowing condition. In the study of metal/slag mixing, it was found that the mixing degree at the case of 10.0 mm inner diameter tuyere was higher than other size tuyeres under the same gas flow rate via 4 tuyeres. And, the mixing degree increased with increasing the total gas flow rate. Additionally, the mixing degree in the case of 4 tuyeres in the square-corner placement was better than in the triangle-corner-center placement at the same tuyere size and total gas flow rate. In experiments of the refractory erosion behavior, it indicate that distribution of erosion surface can also be grouped into two characteristic zones, which are back-attack and cavitation erosion. In the back-attack phenomenon, back-attack pressure and frequency increased with an increase of total gas flow rate of the blown gas via reducing the tuyere size in the tuyere diameter range of 7.5 to 15.0mm. For the cavitation phenomenon, the pressure and frequency of shock wave or microjet increased with an increase of total gas flow rate of the blown gas via reducing the tuyere size. Also, the ersion model of the small tuyere size region(6.0mm and 7.5mm) is cavitation erosion, which made a serious result.
It is concluded that the bottom blowing conditions for the shortest mixing time of molten iron phase, the lowest erosion rate of refractory lining and the best mixing efficiency are bottom blowing total gas flow rate at 480NL/min(120NL/min per tuyere), inner diameter of tuyere at 10.0mm and four bottom blowing tuyeres in the square-corner placement in the experiments conducted in this research.
中文摘要I
英文摘要IV
誌謝V
總目錄VII
表目錄X
圖目錄XI
第一章 緒論1
1.1 前言1
1.2 研究動機3
1.3 研究目的5
第二章 文獻回顧與理論基礎7
2.1 冷熱模系統相似性之解析7
2.1.1 文獻回顧7
2.1.2 冷熱模系統相似性-因次分析推導10
2.2 冷熱模氣流量與水模尺寸換算13
2.2.1 文獻回顧13
2.2.2 熱模與水模間底吹條件相似轉換16
2.3 均混時間的量測18
2.4 耐火材料沖蝕23
2.5 質傳量測27
2.5.1 文獻回顧27
2.5.2 質傳理論29
2.6 氣體噴吹總能量31
2.6.1 文獻回顧31
2.6.2 氣體底吹的總能量之理論估算32
第三章 實驗方法與步驟34
3.1 兩相無因次群公式之推導34
3.2 水模實驗系統之建立34
3.3 水模實驗參數34
3.3.1 鐵及渣相替代介質高度38
3.3.2 氣體噴吹系統設計38
3.3.2.1 底吹管內徑39
3.3.2.2 底吹管數目與排列方式39
3.3.3 底吹氣體流量範圍39
3.3.4 底吹氣體攪拌動能計算模式43
3.4 均混時間量測45
3.5 流場觀察47
3.6 質傳效果的評估49
3.7 底吹噴吹管附近耐火材料之沖蝕51
3.7.1 耐火材沖蝕速率51
3.7.2 回擊頻率及回擊壓力量測52
第四章 結果與討論55
4.1 冷熱模相似性解析55
4.1.1 爐內動量傳送之無因次推導55
4.2 單相的均混時間評估61
4.2.1 底吹管徑的影響61
4.2.2 底吹管數的影響74
4.2.3 底吹管排列方式的影響76
4.2.4 底吹氣體流量的影響79
4.2.5 底吹總能量的影響85
4.3 質傳效果的評估85
4.3.1 底吹管徑對兩相混合程度的影響87
4.3.2 底吹總氣體流量對兩相混合程度的影響93
4.3.3 氣體噴吹總能量對兩相混合程度的影響96
4.3.4 底吹管排列方式對兩相混合程度的影響99
4.4 耐火材沖蝕實驗101
4.4.1 底吹管徑對沖蝕速率的影響101
4.4.2 底吹管數對沖蝕速率的影響113
4.4.3 底吹管排列方式對沖蝕速率的影響116
4.4.4 底吹單管氣體流量對沖蝕速率的影響121
4.4.5 耐火材沖蝕行為121
4.4.5.1 底吹管徑對沖蝕行為的影響121
4.4.5.2 底吹氣體流量對沖蝕行為的影響139
4.4.6 直筒型與60%水模的沖蝕行為比較146
4.5 水模試驗適當的噴吹條件評估148
第五章 結論151
第六章 參考文獻154
作者簡介166
表目錄
表3-1 60%水模與熔融還原爐之物理性質對照表42
表3-2 冷熱模系統之流量對照表42
表3-3 不同的噴吹條件之總能量(J/sec)計算。底吹管數(a)3管(b)4管(c)5管44
表4-1 水模系統與實驗熔融還原爐氣體噴吹攪拌之無因次參數比較60
表4-2 在不同底吹管數及單管氣體底吹流量下的均混時間75
表4-3 單管氣體流量120 NL/min,在不同排列方式(a)三管以正三角(b)四管以正三角-中心(c)四管以正四角(d)五管以正四角中心對稱排列下,不同底吹管內徑所造成的試片沖蝕速率102
表4-4 單管氣體流量120 NL/min,不同底吹管內徑下,噴吹時間15分鐘後之平滑沖蝕區和孔洞沖蝕區的徑向寬度,不同底吹管數及排列位置分別為(a)3管以正三角(b)4管以正三角-中心(c)4管以正四角(d)5管以正四角-中心排列109
表4-5 噴吹條件為固定氣流量120NL/min,不同底吹管徑在氣穴現象的範圍,所得到的平均壓力和頻率數值138
表4-6 不同底吹管徑及氣流量在氣穴現象的範圍,所得到的平均壓力和頻率145
圖目錄
圖1-1 傳統高爐煉鐵製程與熔融還原煉鐵製程之比較2
圖1-2 熔融還原爐的煉鐵原理4
圖2-1 水模中流場分布圖(a)中心噴吹(b)遠離中心噴吹20
圖2-2 不同底吹管位置噴吹所造的流體流動型態21
圖2-3 不同總氣體流量所造成的流場示意圖22
圖2-4 回擊現象與氣穴沖蝕過程示意圖26
圖2-5 壓力感測器所量測回擊頻率及壓力之波形圖28
圖3-1 實驗流程圖35
圖3-2 60%水模尺寸示意圖36
圖3-3 縮小後60%水模裝置設計36
圖3-4 氣體底吹管線設計示意圖37
圖3-5 底吹管數多寡及其排列方式40
圖3-6 底吹管設計示意圖40
圖3-7 在水模中之滯留區46
圖3-8 導電度計放置的位置46
圖3-9 置於不同位置之導電度數據顯示48
圖3-10 噴濺高度量取示意圖50
圖3-11 圓筒形壓克力水模53
圖3-12 回擊頻率及壓力感測器示意圖53
圖3-13 感測器置放圖54
圖3-14 回擊擷取訊號圖54
圖4-1 3管以正三角對稱排列,底吹管徑對均混時間影響之關係圖62
圖4-2 4管以正四角對稱排列,底吹管徑對均混時間影響之關係圖63
圖4-3 採用4管以正三角形-中心排列,不同總底吹氣體流量,底吹管內徑對均混時間的關係圖65
圖4-4 採用5管以正四角-中心排列,底吹管徑對均混時間影響之關係圖66
圖4-5 噴吹攪拌所造成的循環流之流動路徑示意圖69
圖4-6 在總氣流量320和480NL/min下,不同管徑噴吹之巨觀流場照片71
圖4-7 不同底吹管排列下,且不同總氣體流量的條件,底吹管徑與噴濺高度的關係圖。(a)3管以正三角(b)4管以正四角(c)4管以正三角-中心(d)5管以正四角-中心排列72
圖4-8 底吹管數4管,不同底吹管氣體流量和排列方式下,底吹管徑與均混時間之關係圖。底吹總氣體流量(a)320NL/min(b)400NL/min(c)480NL/min78
圖4-9 3管以正三角對稱排列,底吹總氣體流量對均混時間影響之關係圖80
圖4-10 4管以正四角對稱排列,底吹總氣體流量對均混時間影響之關係圖81
圖4-11 4管以正三角中心-對稱排列,底吹總氣體流量對均混時間影響之關係圖83
圖4-12 5管以正四角中心-對稱排列,底吹總氣體流量對均混時間影響之關係圖84
圖4-13 不同底吹管排列下,且不同總氣體流量的條件,底吹總能量與均混時間的關係圖。(a)3管以正三角(b)4管以正三角-中心(c)4管以正四角(d)5管以正四角-中心排列86
圖4-14 底吹管數4管以正四角對稱排列方式(如圖3-5所示),在不同底吹總氣流量下,底吹管徑與體積質傳係數之關係88
圖4-15 底吹管數4管以正三角-中心對稱排列方式(如圖3-5所示),在不同底吹總氣流量下,底吹管徑與體積質傳係數之關係89
圖4-16 底吹管數4管以正四角對稱排列方式,在不同的底吹管徑,氣體噴吹總能量與體積質傳係數之關係91
圖4-17 底吹管數4管以正三角-中心對稱排列方式,在不同的底吹管徑,氣體噴吹的總能量與體積質傳係數之關係圖92
圖4-18 四支底吹管以正四角對稱排列方式,在不同底吹管徑下,底吹氣體總流量與體積質傳係數之關係94
圖4-19 底吹管數4管以正三角-中心對稱排列方式,在不同底吹管徑下,底吹氣體總流量與體積質傳係數之關係95
圖4-20 底吹管數4管以正四角對稱排列方式,在不同的底吹總氣流量下,氣體噴吹的總能量與體積質傳係數之關係97
圖4-21 底吹管數4管以正三角-中心對稱排列方式,在不同的底吹總氣流量下,氣體噴吹的總能量與體積質傳係數之關係98
圖4-22 底吹管數4管的條件下,在不同的底吹排列方式下,底吹管內徑與體積質傳係數之關係圖,底吹總氣流量(a)320L/min(b)400L/min(c)480L/min100
圖4-23 底吹管數3管和排列方式為正三角排列,不同底吹氣體流量下,底吹管內徑大小與試片沖蝕速率之關係圖103
圖4-24 底吹管數4管和排列方式為正四角排列,不同底吹氣體流量下,底吹管內徑試片沖蝕速率與之關係圖105
圖4-25 採用4管以正四角排列,單管氣體流量120NL/min和噴吹時間15分鐘不同管內徑噴吹試驗下,分別為(a)6.0mm(b)7.5mm(c)10.0mm(d)12.5mm(e)15.0mm硼酸試片表面沖蝕照片108
圖4-26 單管氣體流量120NL/min,噴吹時間15分鐘後,不同底吹管數與排列方式下,底吹管內徑與平滑沖蝕區的徑向寬度之關係圖111
圖4-27 單管氣體流量120NL/min,噴吹時間15分鐘後,不同底吹管數與排列方式下,底吹管內徑與孔洞沖蝕區的徑向寬度之關係圖112
圖4-28 不同底吹氣體流量下,底吹管數與試片沖蝕速率之關係圖。底吹管內徑分別 (a)6.0mm(b)7.5mm(c)10.0mm(d)12.5mm(e)15.0mm115
圖4-29 不同底吹管數下,底吹氣體流量與試片沖蝕速率之關係圖。底吹管內徑分別 (a)6.0mm(b)7.5mm(c)10.0mm(d)12.5mm(e)15.0mm118
圖4-30 底吹管數四管,在不同底吹管排列方式下,底吹管內徑大小與沖蝕速率之關係,底吹單管氣體流量分別為(a)80NL/min (b)100NL/min(c)120NL/min119
圖4-31 固定四管,在不同排列方式和底吹管徑下,底吹單管氣體流量與試片沖蝕速率之關係。排列方式為(a)正四角排列(b)正三角-中心排列122
圖4-32 拍攝底吹氣體噴吹過程的照片,其噴吹的條件為固定底吹氣體流量100NL/min,底吹管徑分別為6.0mm和15.0mm。(a)氣體初期噴吹進入液體的情形,(b)氣柱形成,(c)氣泡斷裂導致回擊的情形123
圖4-33 噴吹的條件為固定底吹氣體流量120NL/min,經由不同底吹管徑噴吹所造成氣泡回擊現象的照片126
圖4-34 在底吹管徑6.0mm及氣體流量120NL/min下,感測元件置於徑向距離5和15mm時,時間與電壓值的關係圖。徑向距離(a)5mm和(b)15mm 127
圖4-35 在底吹管徑7.5mm及氣體流量120NL/min下,感測元件置於徑向距離5~20mm時,時間與電壓值的關係圖。徑向距離(a)5mm(b)10mm(c)15mm(d)20mm 129
圖4-36 在底吹管徑10.0mm及氣體流量120NL/min下,感測元件置於徑向距離5~20mm時,時間與電壓值的關係圖。徑向距離(a)5mm(b)10mm(c)15mm(d)20mm 130
圖4-37 在底吹管徑12.5mm及氣體流量120NL/min下,感測元件置於徑向距離10~25mm時,時間與電壓值的關係圖。徑向距離(a)10mm(b)15mm(c)20mm(d)25mm 131
圖4-38 在底吹管徑15.0mm及氣體流量120NL/min下,感測元件置於徑向距離5~20mm時,時間與電壓值的關係圖。徑向距離(a)5mm(b)10mm(c)15mm(d)20mm 133
圖4-39 不同氣體流量的噴吹條件下,且在不同底吹管徑時,距離噴吹管不同位置與壓力變化之關係圖。氣體流量分別為(a)80NL/min(b)100NL/min(c)120NL/min 134
圖4-40 不同氣流量的噴吹條件下,管徑與(a)回擊壓力和(b)回擊頻率之關係圖136
圖4-41 噴吹的條件為管徑6.0mm及氣體流量120NL/min,持續噴吹的照片137
圖4-42 噴吹的條件為固定底吹氣體流量120NL/min,經由不同底吹管徑噴吹15分鐘後,造成硼酸試片表面沖蝕情況及速率140
圖4-43 噴吹的條件為分別為管徑6.0mm及15.0mm,經由不同氣體流量噴吹所造成氣泡回擊現象的照片141
圖4-44 不同底吹管徑、不同氣體流量時,距離噴吹管不同位置與壓力變化之關係圖。底吹管徑分別為(a)6.0mm(b)10.0mm(c)15.0mm143
圖4-45 不同底吹管徑的噴吹條件下,氣流量與(a)回擊壓力和(b)回擊頻率之關係圖144
圖4-46 噴吹的條件為固定底吹管徑10.0mm,經由不同底吹氣體流量噴吹15分鐘後,造成硼酸試片表面沖蝕情況及速率147
圖4-47 噴吹的條件為固定氣體流量120NL/min,經由不同底吹管徑噴吹15分鐘後,分別在直筒型和60%水模所造成硼酸試片表面沖蝕情況及速率149
中文部份
[1]江俊德,盛鋼桶氣體吹設製程中氣泡與鋼液流動現象解析及水模實驗,成功大學碩士論文,1995年。
[2]范志銘,數學模式與物理模式在鋼鐵盛鋼桶精練與連鑄製程之應用研究,成功大學博士論文,2002年。
[3]范志銘、黃文星,盛鋼桶精練之底吹攪拌流場解析與Ca-Si線最佳射點研究,礦冶,vol.45,no.3,2001年, pp119-127。
[4]黃子瑋,製程條件對熔融還原爐內的鐵-渣流動質傳效果影響之水模研究,義守大學碩士論文,2000年。
[5]楊天鈞,熔融還原技術,冶金工業出版社,1989年。
[6]蔣承學,底吹條件對熔融還原爐爐內鐵相混合及耐火材沖蝕影響之水模研究,義守大學碩士論文,2004年。
[7]蔡辛慈,“新煉鐵製程發展近況”,技術與訓練,vol.22,no.5,1997年,pp.54-73。
[8]蘇朝正,底吹條件對熔融還原爐爐底耐火材沖蝕及鐵/渣混合影響之水模研究,義守大學碩士論文,2003年。
英文部份
[1]A. Chatterjee and A. V. Bradshaw, “ Break-up of a Liquid Surface by an Impinging Gas Jet”, Journal Iron and Steel Inst., vol.21, 1972,pp.179-187.
[2]A. G. C. Lane and P. Rice, “An Experimental Investigation of Liquid Jet Mixing Employing a Vertical Submerged Jet”, Transactions of the Institution of Chemical Engineers, vol.64, 1981, pp.1-14.
[3]A. G. C. Lane and P. Rice, “An Investigation of Liquid Jet Mixing Employing an Inclined Side-Entry Jet”, Transactions of the Institution of Chemical Engineers, vol.60, 1982, pp.171-176.
[4]A. Ghosh, “Effect of Swirl Motion on Mixing Time in Water Bath Agitated by Upward Gas Injection”, ISIJ International, vol.42, 2002, pp.456-457.
[5]A. K. Garg and K. D. Peaslee, “Physical Modeling Studies of Major Factors Affecting Slag Splashing”, ISS Transaction, vol.25, no.7, 1998, pp.57-63.
[6]A. K. Patjoshi, “Cold Model Investigation with Inclined Multi- nozzles”, Iron Steel Int. , vol.55, no.1, 1982, pp.27-34.
[7]A. K. Sinha and A. Vassilicos, “Physical Modeling of Thermal Effects on Steel Flow and Mixing in Tundish”, Ironmaking and Steelmaking, vol.25, no.5, 1995, pp.387-393.
[8]A. Kapoor and G. A. Irons, “A Physical Modeling Study of Fluid-flow Phenomena in Gas-slag Systems”, ISIJ International, vol.37, 1997, pp.829-838.
[9]A. Valencia, R. Paredes, M. Rosales, E. Godoy and J. Ortega, “Fluid Dynamics of Submerged Gas Injection into Liquid in a Model of Copper Converter”, International Communications in Heat and Mass Transfer, vol.31, no.1, 2004, pp.21-30.
[10]C. E. Brennen, “Cavitation and Bubble Dynamics”, Oxford University Press, 1995.
[11]C. F. Naude and A. T. Ellis, “On the Mechanism of Cavitation Damage by Non-hemispherical Cavities in Contact with a Solid Boundary”, Journal of Basic Engineering, vol.83, 1961, pp.51-54.
[12]C. I. Christov and P. K. Volkov, “Numerical Investigation of the Steady Viscous Flow Past a Stationary Deformable Bubble”, Journal of Fluid Mechanics, vol.158, 1985, pp.341-364.
[13]C. J. Geankoplis, “Dimensional Analysis in Mass Transfer”, Transport Processes and Unit Operations 3rd, 1995, pp.474-475.
[14]C. J. Liu, Y. X. Zhu and M. F. Jiang, “Physical Modelling of Slag Splashing in Converter”, Ironmaking and Steelmaking, vol.30, no.1, 2003, pp.36-42.
[15]C. W. Chen, C. W. Chen and S. H. Liu, “A Mathematical Model of Fluid Flow Phenomena for the Liquid Bath in Smelting Reduction Processes”, ISIJ International, vol.43, no.7, 2003, pp.990-996.
[16]D. Bhaga and M. E. Weber, “Bubbles in Viscous Liquid: Shapes, Wakes and Velocities”, Journal of Fluid Mechanics, vol.105, 1981, pp.61-85.
[17]D. Mazumda and R.I.L. Guthrie, “The Physical and Modelling of Gas Stirred Ladle System”, ISIJ International, vol.35, no.1, 1995, pp.1-20.
[18]D. Mazumdar and J. W. Evans, “Macroscopic Models for Gas Stirred Ladies”, ISIJ International, vol.44, 2004, pp.447-461.
[19]D. Mazumdar and R. Guthrie, “Scaling Equations for Gas Stirred Ladle System”, Transactions ISIJ , vol.30, 1990, pp.460-468.
[20]D. Mazumdar and R. I. L. Guthrie, “Mixing Models for Gas Stirred Metallurgical Reactors”, Metallurgicall Transactions B, vol.17B, 1986, pp.725-733.
[21]D. Mazumdar and R. I. L. Guthrie, “Motion of Alloying Addition in the CAS Steelmaking Operation”, Metallurgicall Transations, vol.24, 1993, pp.649-655.
[22]D. Mazumdar and R. I. L. Guthrie,“Hydrodynamic Modeling of Some Gas Injection Procedures in Ladle Metallurgy Operations”, Metallurgicall Transations, vol.16, 1985, pp.83-90.
[23]D. Mazumder and R. I. L. Guthrie, “Hydrodynamics of CAS Method of Alloy Additions”, Ironmaking andSteelmaking, vol.12, no.6, 1985, pp.256-264.
[24]D. N. Ghosh and R. P. Singh, “Cold Model Study of Mixing Time in Hybrid Process”, Transaction ISIJ, vol.28, 1988, pp.659-662.
[25]F. Raymond and J. M. Rosant,“A Numerical and Experimental Study of the Terminal Velocity and Shape of Bubbles in Viscous Liquids”, Chemical Engineering Science, vol.55, 2000, pp.943-955.
[26]G. G. K. Murthy and S. P. Mehrotra, “Mixing in Liquid Baths by Gas Injection”, Ironmaking and Steelmaking, vol.19, no.5, 1992, pp.377-389.
[27]G. G. Krishna, S. P. Mehrotra and A. Ghosh, “Experimental Investigation of Mixing Phenomena in a Gas Stirred Liquid Bath”, Metallurgical Transaction B, 1988, pp.839-850.
[28]G. Ryskin and L. G. Leal, “Numerical Solution of Free- boundary Problems in Fluid Mechanics. Part 2. Buoyancy- Driven Motion of a Gas Bubble Through a Quiescent Liquid”, Journal of Fluid Mechanics, vol.148, 1984, pp.19-35.
[29]H. D. Kim, B. Ozturk and R. J. Fruehan, “Slag-Metal Separation in the Blast Furnace Trough”, ISIJ International, vol.38, no.5, 1998, pp.430-439.
[30]H. D. Zughbi and M. A. Rakib, “Mixing in a Fluid Jet Agitated Tank: Effects of Jet Angle and Elevation and Number of jets”, Chemical Engineering Science, vol.59, 2004, pp.829-842.
[31]H. Fossett, L. E. Prosser, “The Application of Free Jets to the Mixing of Fluids in Bulk”, Journal of Institute of Mechanical Engineers, vol.160, 1949, pp.224-232.
[32]H. Gou, G. A. Irons and W. K. Lu, “A Multiphase Fluid Mechanics Approach to Gas Holdup in Bath Smelting Processes”, Metallurgical and Materials Transaction B, vol.27B, 1996, pp.195-201.
[33]H. Turkoglu and B. Farouk, “Mixing Time and Liquid Circulation Rate in Steelmaking Ladles with Vertical Injection”, ISIJ International, vol. 31, 1991, pp.1371-1380.
[34]J .Karcz and J. Szoplik, “An Effect of the Eccentric Position of the Propeller Agitator on the Mixing time”, Chemical Papers, vol.58, no.12004, pp.9-14.
[35]J. B. Mclaughlin, “Numerical Simulation of Bubble Motion in Water”, Journal of Colloid and Interface Science, vol.184, 1996, pp.614-625.
[36]J. H. Wei, J. C. Ma, Y. Y. Fan, N. W. Yu, S. L. Yang and S. H. Xiang, “Back-attack Phenomena of Gas Jets with Submerged Horizontally Blowing and Effect on Erosion and Wear of Refractory Lining”, ISIJ International, vol.39, 1999, pp.779-786.
[37]J. M. Chou, M. C. Chuang, M. H. Yeh, W. S. Hwang, S. H. Liu, S. T. Tsai and H. S. Wang, “Effects of Process Conditions on Mixing Between Molten Iron and Slag in Smelting Reduction Vessel Via Water Model Study”, Ironmaking and Steelmaking, vol.30, no.3, 2003, pp.195-202.
[38]J. R. Grace, “Shapes and Velocities of Bubbles Rising in Infinite Liquids”, Trans. Inst. Chem. Eng, vol.51, 1973, pp.116-120.
[39]J. Szekely, T. Lehner and C.W. Chang, “Flow Phenomena, Mixing, and Mass Transfer in Argon-Stirred Ladles”, Ironmaking and Steelmaking, vol.6, no.6, 1979, pp.285-293.
[40]K. D. Peaslee, “ Physical Modeling of Slag Splashing in the BOF”, Iron and Steel Engineer, vol.173, no.5, 1995, pp.33-37.
[41]K. Krishnakumar and N. B. Ballal, “Effect of Vacuum on Mixing Behavior in a Ladle-a Watermodel Study”,ISIJ International, vol.39, 1999,pp.1120-1124.
[42]K. Krishnakumar, N. B. Ballal, P.K. Sinha, M.K. Sardar and K.N. Jha, “Water Model Experiments on Mixing Phenomena in a VOD Ladle”, ISIJ International, vol.39, 1999, pp.419-425.
[43]K. Mori and M. Sango, “Process Kinetics in Injection Metallurgy”, 鐵と鋼, vol.67 , 1981, pp.24-47.
[44]K. Nakanishi, “Physical and Metallurgical Characteristics of Combined Blowing Processes”, Committee for Steelmaking, 1980, pp.19-103.
[45]K. Nakanishi, T. Fujii and J. Szekely, “Possible Relationship Between Energy Dissipation and Agitation in Steel Processing Operations”, Ironmaking and Steelmaking, vol.3, 1975, pp.193-197.
[46]K. S. Suslick,“The Chemical Effects of Ultrasound”, Scientific American, 1989, pp.80-86.
[47]K. Suzuki, M. Takana, K. Nakanishi and I. Mastuno, “Water Model Experiments on Two-dimensional Velocity Distributions of Liquid Steel near the Bottom of a Top-and Bottom-Blowing Converter”, Trans. ISIJ, vol.22B, 1982, pp.237-251.
[48]L. J. Lee, J. M. Ottino, W. E. Ranz and C. W. Macosko, “Impingement Mixing in Reaction Injection Molding”, Polymer Engineering and Science, vol.20, no.13, 1980, pp.868-874.
[49]M. Iguchi , O.J. Ilegbusi , H. Ueda , T. Kuranga and Z.I. Morita, “Water Model Experiment on the Liquid Flow Behavior in a Bottom Blown Bath with Top Layer”, Metallurgical and Materials Transactions B, vol.27B, no.1, 1996, pp.35-41.
[50]M. J. Corbett, “Process Developments in Coal-based Ironmaking”, Transactions of the Institute of Mining and Metallurgy, Section C, vol.103, 1994, pp.21-25.
[51]M. J. Luomala, T. M. J. Fabiritius and J. J. Harkki, “The Effect of Bottom Nozzle Configuration on the Bath Behaviour in the BOF”, ISIJ International 44, 2004, pp.809-816.
[52]M. J. Luomala, T. M.J. Fabritius, E. O. Virtanen, T. P. Siivola and J. J. Harkki, “ Splashing and Spitting Behaviour in the Combined Blown Steelmaking Converter”, ISIJ International, vol.42, no.9, 2002, pp.944-949.
[53]M. J. Mcnallan and T. B. King, “Fluid Dynamics of Vertical Submerged Gas Jets in Liquid Metal Processing Systems”, Metallurgical Transaction B, vol.13, no.2, 1982, pp.165-173.
[54]M. Nyoka, G . Akdogan, R.H. Eric and N. Sutcliffe, “Mixing and Solid-Liquid Mass-Transfer Rates in a Creusot-Loire Uddeholm Vessel: A water Model Case Study”, Metallurgical and Materials Transactions B, vol.34B, 2003, pp.833-842.
[55]M. P. Newby, “Experiments on the Gas and Fluid Flow in a Side-Blown Converter Model”, Journal of the Iron and Steel Institute, vol.5, no.8, 1949, pp.452-456.
[56]M. P. Schwarz, “Bouyancy and Expansion Power in Gas-Agitated Baths”, ISIJ International, vol.31, 1991, pp.947-951.
[57]M. S. Plesset and A. Prosperetti, “Bubble Dynamics and Cavitation”, Annual Review Fluid Mechanics,vol.9,1977,pp.145-185.
[58]M. Sango and K. Mori, “Fluid Flow and Mixing Characteristics in a Gas-Stirred Molten Bath”, Transaction ISIJ, vol.23, 1983, pp.169-175.
[59]M. Y. Zhu, T. Inomoto, I. Sawada and T.C. Hsiao, “Fluid Flow and Mixing Phenomena in the Ladle Stirred by Argon through Multi-Tuyere”, ISIJ International, vol.35, no.5, 1995, pp.472-479.
[60]N. Harnby, M.F. Edwards and A. W. Nienow, “Mixing in the Process Industries”, Butterworth-Heinemann, 1997, pp.170-171.
[61]Q. L. He and N. Standish, “ A Model Study of Droplet Generation in the BOF Steelmaking”, ISIJ International, vol.30, no.4, 1990, pp.305-309.
[62]Q. X. Yang and H. Gustavsson, “Effects of Gas Jet Instability on Refractory Wear-A Study by High-Speed Photography”, Scandinavian Journal of Metallurgy, vol.221, no.1, 1992,pp.15-26.
[63]Q. X. Yang, H. Gustavsson and E. Burströmm, “Erosion of Refractory During Gas Injection – A Cavitation Based Model”, Scandinavian Journal of Metallurgy, vol.19, 1990, pp.127-136.
[64]R. J. Matway, H. Henein and R. J. Fruehan, “Physical Modeling of Slag/Metal Reaction in Combined Blowing-Effect of Tuyere Location,Tuyere Size and Gas Flowrate”, ISS Transaction, vol.13, 1992, pp.121-128.
[65]R. K. Grenville, J. N. Tilton,“A New Theory Improves the Correlation of Blend Time Data from Turbulent Jet Mixed Vessels”, Chemical Engineering Research and Design, vol.74, no.3, 1996, pp.390-396.
[66]R. P. Singh and D. N. Ghosh, “ Cold Model Study of Mixing and Mass Transfer in LBE Process of Steelmaking”, ISIJ International, vol.30, no.11, 1990, pp.955-960.
[67]R. T. Knapp, J. W. Daily and H. FG, “Cavitation”, McGraw- Hill, New York, 1970.
[68]R.B. Banks, “Experiments Investigation of the Penetration of a High Velocity Gas Jet Through a Liquid Surface”, Journal of Fuild Mechanics, vol.15, Part l, 1962, pp.13-34.
[69]R.I.L. Guthrie, M. Isac and Z.H. Lin, “Fluid Dynamics Simuation of Chromium Recovery from AOD Slags During Reduction with Ferrosilicon Additions”, Ironmaking and Steelmaking, vol.32, no.2, 2005, pp.133-140.
[70]S. Asai, T. Okamoto and J. C. He, “Mixing Time of Refining Vessels Stirred by Gas Injection”, Trans. ISIJ, vol.23, 1983, pp.43-50.
[71]S. C. Koria and K. W. Lange, “A New Approach to Investigate the Drop Size Distribution in Basic Oxygen Steelmaking”, Metallurgical Transactions B, vol.15B, no.3, 1984, pp.109-116.
[72]S. C. Koria, “Dynamic Variations of Lance Distance in Impinging Jet Steelmaking Practice”, Steel Research, vol.59, no.6, 1988, pp.257-262.
[73]S. C. Koria, “Studies of the Bath Mixing Intensity on Converter Steelmaking Processes”, Canadian Metallurgical Quarterly, vol. 31, no.2, 1992, pp.105-112.
[74]S. C. Malguernera and N. P. Suh, “Liquid Injection Molding: An Investigation of Impingement Mixing”, Polymer Engineering and Science, vol.17, no.2, 1977, pp.111-115.
[75]S. Chung, J. Zong and J. Yoon, “The Effect of the Gas Jet on the Gas/Liquid Reactivity in the Metallurgical Vessel”, ISIJ International, vol.31, 1991, pp.69-75.
[76]S. H. Kim and R. J. Fruehan, “Physical Modeling of Gas/Liquid Mass Transfer in a Gas Stirred Ladle”, Metallurgical and Materials Transactions B, vol.18B, no.4, 1987, pp.381-390.
[77]S. H. Kim and R. J. Fruehan, “Physical Modeling of Liquid/ Liquid Mass Transfer in Gas Stirred Ladles”, Metallurgical Transactions B , vol.18B, no.2, 1987, pp.381-390.
[78]S. Joo and R. I. L. Guthrie, “Modeling Flows and Mixing in Steelmaking Ladles Designed for Single-and Dual-Plug Bubbling Operations”,Metallurgical Transactions B, vol.23B, 1992, pp.765-778.
[79]S. K. Ajmani, A. K. Das, P. K. Gbose and U. K. Cbaturvedi, “Improvement in Oxygen Steelmaking-An Innovative Way of Bottom Injection”, Tata. Tech., vol.39, 2004, pp.1-6.
[80]S. K. Ajmani, B. V. SubbaRao and A. Chatterjee, “Mixing and Mass Transfer in the 130t Ld Converters at Tata Steel: Cold Model Studies”, Tata Search, 1994, pp.62-69.
[81]S. L. Chung, J. H. Zong and J. K. Yoon, “The Effect of the Gas Jet on the Gas/Liquid Reactivity in the Metallurgical Vessel”, ISIJ International, vol.31, no.1, 1991, pp.69-75.
[82]S. Sakaguchi, M. Ishibashi, M. Yoshi, S. Yamamoto and H. Kajioka, “On the Bottom Blowing Tuyere for Steel Refining”, Tetsu-to-Hagane, vol.63, no.11, 1977, pp.534-549.
[83]S. V. Komarov, K. Itoh, M. Sano and K. A. Blinov, “Mixing Phenomena in a Liquid Bath Stirred by Gas Jets through Side and Inclined Nozzles”, ISIJ International, vol.33, no.7, 1993, pp.740-747.
[84]T. Aoki , S. Masuda , A. Hatono and M. Taga, “Characteristics of Submerged Gas Jets and a New Type Bottom Blowing Tuyere”, Proceedings International Conference on Injection Phenomena I Extraction and Refining(Wraith A edition), vol. 1, 1982, pp.1-36.
[85]T. Aoki, “The Mechanism of the Back-Attack Phenomenon on a Bottom Blowing Tuyere Investigated in Model Experiments”, Tetsu-to-Hagane, vol.76, 1990, pp.1996-2003.
[86]T. B. Benjamin and A. T. Ellis,“The Collapse of Cavitation Bubbles and the Pressure Thereby Produced Against Solid Boundaries”, Phil. Trans. Roy. Soc. London, vol.260, 1966, pp.221-240.
[87]T. Fukutake and V. Rajakumar, “Liquid Holdup and Abnormal Flow Phenomena in Packed Beds under Condition Simulating the Flow in the Dropping Zone of a Blast Furnace”, Transactions ISIJ , vol.22, 1982, pp.355-363.
[88]T. M. J. Fabritius, P. T. Mure and J. J. Harkki, “The Determination of the Minimum and Operational Gas Flow Rates for Sidewall Blowing in the AOD-Converter”, ISIJ International, vol.43, no.8, 2003, pp.1177-1184.
[89]T. Maruyama, “Jet mixing of Fluids in Vessels”, Encyclopaedia of Fluid Mechanics, vol. 2, 1986, pp.544-562.
[90]T. Maruyama, Y. Ban and T. Mizushina, “Jet mixing of Fluids in Tanks”, Journal of Chemical Engineering of Japan, 1982, vol.15, no.5 pp.342-348.
[91]T. Sawada,“The Start-up of the DIOS Pilot Plant”, Ironmaking Conference Proceedings, vol. 54, 1995, pp.499-506.
[92]T. Tanaka and K. Okane, “ Interaction Between Gas and Liquid Caused by Streams Blown to a Liquid Surface”, ISIJ, vol.74, no.8, 1988, pp.75-92.
[93]T. Tanaka and K. Okane, “Interaction Between Gas and Liquid by Means of Jet of Top Blow”, Trans. ISIJ , vol.27, no.1, 1987, p.7.
[94]U. P. Sinha and M. J. Mcnallan, “Mixing in Ladles by Vertical Injection of Gas and Gas-Particle Jets-A Water Model Study”, Metallurgical Transactions B, vol.16B, 1985, pp.850-853.
[95]V. L. Streeter, E. B. Wylie and K. W. Bedford, “Dimensional Analysis and Dynamic Similitude”, Fluid Mechanics 9th, McGraw-Hill Companies, 1997, pp.224-258.
[96]W. Bratok, C. E. Heath and M. A. Weiss, “Mixing in a Jet-Stirred Reactor ”, AIChE Journal,vol.17, 1960, pp.685-689.
[97]Y. Kishimoto, Y. Sheneg, G. A. Irons and J. S. Chang, “Energy Dissipation in Gas-Stirred Liquids” ,ISIJ International, vol.39, no.2, 1999, pp.113-122.
[98]Y. Ozawa and K. Mori, “Characteristics of Jetting Observed in Gas Injection into Liquid”, Transactions ISIJ, vol.23, 1983, pp.764-768.
[99]Y. P. Hwang, C. M. Fan, Y. L. Chen, W. S. Hwang, I. G. Chen and S. H. Liu, “Study of Solid Mushroom Formation in Direct Iron Ore Ssmelting Reduction Process Using Low Temperature Water Model”, Ironmaking and Steelmaking, vol.30, no.4, 2003, pp.328-336.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top