|
[1]T. L. Alford, J. Li, J. W. Mayer, and S. Q. Wang, “Copper-based metallization and interconnects for ultra-large-scale integration applications”, Thin Solid Films, 262, p. vii-viii (1995). [2]M. Moussavi, “Recent Progress on Advanced Interconnects”, Proceedings of 30th European Solid State Device Research Conference, p. 68-71 (2000). [3]M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho, and P. S. Ho,“Low dielectric constant materials for ULSI interconnects”, Annual Review of Materials Science, 30, p. 645-680 (2000). [4]X.W. Liu, J.H. Lin, W.J. Jong, and H.C. Shih, “The effect of pressure control on a thermally stable a-C:N thin film with low dielectric constant by electron cyclotron resonance-plasma”, Thin Solid Films, 409, p. 178–184 (2002). [5]S.H. Lai, Y.L. Chen, L.H. Chan, Y.M. Pan, X.W. Liu, and H. C. Shih, “The crys-talline properties of carbon nitride nanotubes synthesized by electron cyclotron resonance plasma”, Thin Solid Films, 444, p. 38-43 (2003). [6]X.W. Liu, J.H. Lin, C.H. Tseng, and H. C. Shih, “Optical and structural properties of the amorphous carbon nitride by ECR-plasma”, Mater. Chem. Phys., 72, p.258-263 (2001). [7]X.W. Liu, C.H. Tseng, J.H. Lin, L.T. Chao, and H. C. Shih, “Optical properties of amorphous carbon nitride synthesized on Si by ECR-CVD”, Surf. Coat. Technol., 135, p. 184-187 (2001). [8]W.J. Hsieh, C.H. Wang, S.H. Lai, J.W. Wong, H. C. Shih, and T.S. Huang, “Ca-thodoluminescence of fluorine doped amorphous carbon nanoparticles deposited by a filtered cathodic arc plasma system”, Carbon, 44, p. 107-112 (2006). [9]W.J. Hsieh, S.H. Lai, L.H. Chan, K.L. Chang, and H. C. Shih, “Cathodolumines-cence and electron field emission of boron-doped a-C : N films”, Carbon, 43, p. 820-826 (2005). [10]S.H. Lai, K.L. Chang, H. C. Shih, K.P. Huang, and P. Lin, “Electron field emis-sion from various morphologies of fluorinated amorphous carbon nanostructures”, Appl. Phys. Lett., 85, p. 6248-6250 (2004). [11]S.H. Lai, K.P. Huang, Y.M. Pan, Y.L. Chen, L.H. Chan, P. Lin, and H. C. Shih, “Electron field emission from fluorinated amorphous carbon nanoparticles on po-rous alumina”, Chem. Phys. Lett., 382, p. 567-572 (2003). [12]X.W. Liu, L.H. Chan, W.J. Hsieh, J.H. Lin, and H. C. Shih, “The effect of argon on the electron field emission properties of alpha-C : N thin films”, Carbon, 41, p. 1143-1148 (2003). [13]X.W. Liu, C.H. Lin, L.T. Chao, and H. C. Shih, “Electron field emission from amorphous carbon nitride nanotips”, Mater. Lett., 44, p. 304-308 (2000). [14]X.W. Liu, S.H. Tsai, L.H. Lee, M.X. Yang, A.C.M. Yang, I.N. Lin, and H. C. Shih, “Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma”, J. Vac. Sci. Technol. B, 18, p. 1840-1846 (2000). [15]N. Hayasaka, H. Miyajima, Y. Nakasaki, and R. Katsumata, “Fluorine doped SiOF for low dielectric constant films in sub-half micron ULSI multilevel inter-connection”, Proc. Int. Conf. Solid State Device and Materials, p. 157-159 (1995). [16]S. Sugahara, K. I Usami, and M. Matsumura, “A Proposed Organic-Silica Film for Inter-Metal-Dielectric Application”, Jpn. J. Appl. Phys., 38, p. 1428-1432 (1999). [17]J. Gambino, A. Stamper, T. Mcdevitt, V. McGahay, S. Luce, T. Pricer, B. Porth, C. Senowitz, R. Kontra, M. Gibson, H. Wildman, A.Piper, C. Benson,T.Standaert, P. Biolsi,E. Cooney, E. Webster, R. Wistrom, A. Winslow, and E. White, “Integration of Copper with Low-k Dielectrics for 0.13μm Technology”, Proceedings of 9th IPFA Conference, p. 111-117 (2002). [18]B. Narayanan, R. Kumar, and P. D. Foo, “Linearly varying surface-implanted n− layer used for improving trade-off between breakdown voltage and on-resistance of RESURF LDMOS transistor”, Microelectronic Journal, 33, p. 971-974 (2002). [19]V. McGayay, A. Acovic, B. Argarwala, G. Endicott, M. Shapiro, and S. Yankee, “Process integration and reliability of hydrogen silsesquioxane in direct-on-metal application ”, Int. VLSI Multilevel Interconnection Conf. Proc., p. 116 (1996). [20]M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H Thin Films Deposited from Hydrogen Silsesquioxane Resins”, J. Electrochem. Soc., 145, p. 2861-2866 (1998). [21]J. Tao, N. W. Cheung, and C. Hu, “Characterization and modeling of electromi-gration failures in multilayered interconnects and barrier layer materials”, IEEE Trans. Electron Devices, 43, p. 1819-1825 (1996). [22]M. Rocke and M. Schneegans, “Titanium nitride for antireflection control and hillock suppression on aluminum silicon metallization”, J. Vac. Sci. Technol., B6, p. 1113-1115 (1988). [23]D. S. Gardner, T. L. Michalka, K. C. Saraswat, T. W. Barhee, J. P. McVittie, and J. D. Meindl, “Layered and homogeneous films of aluminumlsilicon with titanium and tungsten for multilevel interconnects”, IEEE Trans. Electron Devices, ED-32, p.174-183 (1985). [24]T. Lee, K. Watson, F. Chen, J. Gill, D. Harmon, T. Sulllivan, and B. Li, “Charac-terization and reliability of TaN thin film resistors”, in proceedings of IEEE 42nd Annual Inter. Relia. Physics Symposium, p. 502-508 (2004). [25]A. Malmros, M. Sudow, K. Andersson, and N. Rorsman , “Characterization and reliability of TaN thin film resistors”, J. Vac. Sci. Technol. B, 28, p. 912-915 (2010). [26]Y. Li, D. Donnet, A. Grzegorczyk, J. Cavelaars, and F. Kuper, “Assessing the degradation mechanisms and current limitation design rules of SiCr-based thin-film resistors in integrated circuits”, in IEEE International Reliability Physics Symposium(IRPS), p.724-730 (2010). [27]G. I. Drandova and K. D. Decker, “TaN Resistor Reliability Studies”, in pro-ceedings of CS Mantech Conference, p. 69-72 (2010). [28]R. Brynsvold and K. Manning, “Constant-current stressing of SiCr-based thin film resistors: Initial “wearout” investigation”, IIRW FINAL REPORT, p.37-43 (2006). [29]F. Downey, “IMD stack thermal resistance effects on SiCr thin film resistor’s current density performance”, IIRW FINAL REPORT, p. 148-150 (2009). [30]M. Moussavi, “Advanced interconnect scheme towards 0.1 um”, IEDM, p. 611-614 (1999). [31]S. H. Liu, E. Tolentino, Y. Lim, and A. Koo, “Advanced metrology for rapid characterization of the thermal mechanical properties of low-k dielectric and cop-per thin films”, J. Electro. Mater., 30, p. 299-303 (2001). [32]M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, “A high reliability metal insulator metal capaci-tor for 0.18μm copper technology”, IEDM, p157-160 (2000). [33]M. Vogt, M. Kachel, M. Plotner, and K. Drescher, “Dielectric barriers for Cu metallization systems”, Microelectronic Engineering, 37-38, p. 181-187 (1997). [34]M. Fayolle, G. Passemard, M. Assous, D. Louis, A. Beverina, Y. Gobil, J. Clu-zel, and L. Arnaud, “Integration of copper with an organic low-k dielectric in 0.12-μm node interconnect”, Microelectronic Engineering, 60, p. 119-124 (2002). [35]G. Passemard, O. Demolliens, C. H. Lecornec, P. Noel, J. C. Maisonobe, P. Motte, J. Palleau, F. Pires, L. Ravel, J. Torres, and F. Vinet, “Single damascene integration of BCB with copper”, VLSI Multilevel Interconnection Conference (VMIC), p. 63-68 (1998). [36]B. Y. Tsui, K. L. Fang, and S. E. Lee, “Electrical instability of low-dielectric constant diffusion barrier film (a-SiC:H) for copper interconnect”, IEEE Transac-tions on Electron Devices, 48, p. 2375-2383 (2001). [37]J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micro CMOS”, Proc. Symp. VLSI Technol. Dig., p. 59-60 (1994). [38]M. H. Jo, H. and H. Park, “Leakage current and dielectric breakdown behavior in annealed SiO2 aerogel films”, Appl. Phys. Lett., 72, p. 1391-1393 (1998). [39]J. Torres, “Cu dual damascene for advanced metallisation (0.18 μm and be-yond)”, Proc. IITC conference, p. 253-255 (1999). [40]D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper intercon-nects with polymer ILDs”, Thin Solid Films, 308-309, p. 523-528 (1997). [41]J. Goo, B. K. Hwang, J. H. Choi, U. I. Chung, and Y. B. Koh, “Reliable and simple Non-etch back process for inter-metal dielectric (IMD) of 256M DRAM using spin-on hydrogen silsesquioxane”, Proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, p. 329-332 (1997). [42]R. Swope, W. S. Yoo, J. Hsieh, and H. T. Nijenhuis, “Nitrous oxide plasma surface treatment of PECVD FSG films”, Proc. Int. Dielectrics for ULSI Multi-level Interconnection Conference, p. 295-301 (1996). [43]R. Manepalli, K. D. Farnsworth, S. A. B. Allen, and P. A. Kohl, “Multilayer Electron-Beam Curing of Polymer Dielectric for Electrical Interconnections”, Electrochemical and solid-state letter, 3, p. 228-231 (2000). [44]Y. Shimogaki, S. W. Lim, Y. Nakano, K. Tada, and H. Komiyama, “The con-tribution on Si-O vibration modes to the dielectric constant of SiO2:F film”, Proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, p. 36-43 (1996). [45]Y. Liu, K. Chung, C. Saha, H. C. Liou, M. Spaulding, J. Pretzer, and J. Brem-mer, “Advance cure processing of hydrogen silsesquioxane for low dielectric con-stant”, Proc. Int. Dielectrics for ULSI Multilevel Interconnection Conference, p. 155-158 (1998). [46]S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, “Preparation of low dielectric constant F‐doped SiO2 films by plasma enhanced chemical vapor deposition”, Appl. Phys. Lett., 68, p. 832-834, (1996). [47]C. Y. Chang and S. M. Sze, “ ULSI Technology”, McGraw-Hill Company U. S. A, p. 453 (1996). [48]M. A. Fury, “CMP processing with low-k dielectrics”, Solid State Technology, 42, p. 87-96 (1999). [49]T. J. Licata, E. G. Colgan, J. M. E. Harper, and S. E. Luce, “Interconnect fabri-cation processes and the development of low-cost wiring for CMOS products”, IBM Journal of Research & Development, 39, p. 419-435 (1995). [50]W. S. Yoo, R. Swope, and D. Mordo, “Plasma Enhanced Chemical Vapor Dep-osition and Characterization of Fluorine Doped Silicon Dioxide Films”, Jpn. J. Appl. Phys., 36, p. 267-272 (1997). [51]T. Homma, “Instability of Si-F bonds in fluorinated silicon oxide (SiOF) films formed by various techniques”, Thin Solid Films, 278, p. 28-31 (1996). [52]H. Kudo, R. Shinohara, S. Takeishi, N. Awaji, and M. Yamada, “Densified SiOF Film Formation for Preventing Water Absorption”, Jpn. J. Appl. Phys., 35, p. 1583-1587 (1996). [53]T. Homma, R. Yamaguchi, and Y. Murao, “A Room Temperature Chemical Vapor Deposition SiOF Film Formation Technology for the Interlayer in Submi-cron Multilevel Interconnections”, J. Electrochem. Soc., 140, p. 687-692 (1993). [54]T. Homma, R. Yamaguchi, and Y. Murao, “Flow Characteristics of SiOF Films in Room Temperature Chemical Vapor Deposition Utilizing Fluo-ro-Trialkoxy-Silane Group and Pure Water as Gas Sources”, J. Electrochem. Soc., 140, p. 3599-3603 (1993). [55]B. K. Hwang, J. H. Choi, S. W. Lee, K. Kishimoto, T. Usami, H. Kawamoto, K. Ueno, and M. Y. Lee, “Elimination of Al Line and Via Resistance Degradation under HTS Test in Application of F-Doped Oxide as Intermetal Dielectric”, Jpn. J. Appl. Phys., 35, p. 1588-1592 (1996). [56]V. L. Shanno and M. Z. Karim, “Study of the material properties and suitability of plasma-deposited fluorine-doped silicon dioxides for low dielectric constant interlevel dielectrics”, Thin Solid Films, 270, p. 498-502 (1995). [57]P. Weigand, N. Shoda, T. Matsuda, S. Nguyen, J. Rzuczek, M. J. Shapiro, T. Jones, and R. Ploessl, “HDPCVD Silicon Oxide Deposition: The Effect of Sput-tering on Film Properties”, Proceedings of the Thirteenth International VMIC, p. 75-80 (1996). [58]S. M. Lee, M. Park, K. C. Park, J. T. Bark, and J. Jang, “Low Dielectric Con-stant Fluorinated Oxide Films Prepared by Remote Plasma Chemical Vapor Dep-osition”, Jpn. J. Appl. Phys., 35, p. 1579-1582 (1996). [59]M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Interaction between water and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol., A15, p. 2915-2922 (1997). [60]G. Lucovsky and H. Yang, “Fluorine atom induced decreases to the contribu-tion of infrared vibrations to the static dielectric constant of Si–O–F alloy films”, J. Vac. Sci. Technol., A15, p. 836-843 (1997). [61]J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, and G. Lucovsky, “Local bonding environments of Si–OH groups in SiO2 deposited by remote plasma‐enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor”, J. Vac. Sci. Technol. A, 8, p. 1374-1381 (1990). [62]N. Lifshitz and G. Smolinsky, “Hot-carrier aging of the MOS transistor in the presence of spin-on glass as the interlevel dielectric”, IEEE Electron Device Lett., 12, p. 140-142 (1991). [63]H. Miyajima, R. Katsumata, N. Hayasaka, and H. Okano, Proceedings of 16th the symposium on Dry Process, Tokyo, Japan, p. 133 (1994). [64]S. Takeishi, H. Kudo, R. Shinohara, A. Tsukune, Y. Satoh, H. Miyazawa, H. Harada, and W. S. Yoo, “Stabilizing Dielectric Constants of Fluorine-Doped SiO2 Films by N2O-Plasma Annealing”, J. Electrochem. Soc., 143, p. 381-385 (1996). [65]S. V. Nguyen, “High-Density Plasma Chemical Vapor Deposition of Sili-con-Based Dielectric Films for Integrated Circuits”, IBM J. Res. Develop., 43, p. 109-126 (1999). [66]P. Singer, “The future of dielectric CVD: High-density plasmas”, Semicond. Int., p. 126-134 (1997). [67]C. Shim, J. Yang, M. Choi, and D. Jung, “Characteristics under Bi-as-Temperature-Stress of Cu/Low-k a-SiCO:H Structures Prepared by Plasma Enhanced Chemical Vapor Deposition Using a Hexamethyldisilane Precursor and Cu Sputtering”, Jpn. J. Appl. Phys., 42, p. L910-L913 (2003). [68]M. Naik, S. Parikh, P. Li, J. Educato, D. Cheung, I. Hashim, P. Hey, S. Jenq, T. Pan, F.Redeker, V. Rana, B. Tang, and D. Yost, “Process integration of double lev-el copper-low k (k=2.8) interconnect”, Proceedings of 1999 IEEE Conference, p.181-183 (1999). [69]G. A. Dixit, K. J. Taylor, A. Singh, C. K. Lee, G. B. Shinn, A. Konecni, W. Y. Hsu, K. Brennan, Mi-Chang Chang, and R. H. Havemann, "An Integrated Low Resistance Aluminum Plug and Low-k Polymer Dielectric for High Performance 0.25μm Interconnects," Symposium on VLSI Technology, Digest of Technical Pa-pers, p. 86-87 (1996). [70]S. Bothra, M. Kellam, and G. Garrou, in Int. “VLSI Multilevel Interconnection Conf. Proc., Santa Clara, CA, 8-9 June, p. 131 (1993). [71]J. Cluzel, F. Mondon, Y. Loquest, Y. Morand, and G. Reimbold, “Electrical characterization of low permittivity materials for ULSI inter-metal-insulation”, Microelectronics Reliability, 40, p. 675-678 (2000). [72]S. Q. Wang and B. Zhao, “Gap fill dependence of fluorinated polyimide films on solid content, adhesion promoter, spin dwell time, and solvent spray”, J. Vac. Sci. Technol. B, 14, p. 2656-2659 (1996). [73]F. Kuchenmeister, U. Schubert, and C. Wenzel, “SiLK dielectric planarization by chemical mechanical polishing”, Microelectronics Engineering, 50, p. 47-52 (2000). [74]A. T. Kohl, R. Mimna, R. Shick, L. Rhodes, Z. L. Wang, and P. A. Kohl, “Low k, Porous Methyl Silsesquioxane and Spin-On-Glass”, Electrochemical and Sol-id-State Letters, 2, p. 77-79 (1999). [75]C. T. Chua, G. Sarkar, and X. Hu, “In Situ Characterization of Methylsilses-quioxane Curing”, J. Electrochem. Soc., 145, p. 4007-4011 (1998). [76]J. Waeterloos, H. Meynen, B. Coenegrachts, J. Grillaert, and L. V. Hove, Pro-ceedings Dielectrics for ULSI Multilevel Interconnect Conference, p. 52-60 (1996). [77]T. C. Chang, P. T. Liu, Y. J. Mei, Y. S. Mor, T. H. Perng, Y. L. Yang, and S. M. Sze, “Effects of H2 plasma treatment on low dielectric constant methylsilsesqui-oxane”, J. Vac. Sci. Technol. B, 17, p. 2325-2330 (1999). [78]Y. H. Kim, S. K. Lee, and H. J. Kim, “Low-k Si–O–C–H composite films pre-pared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor”, J. Vac. Sci. Technol. A, 18, p. 1216-1619 (2000). [79]Y. Uchida, K. Taguchi, S. Sugahara, and M. Matsumura, “A Fluorinated Or-ganic-Silica Film with Extremely Low Dielectric Constant”, Jpn. J. Appl. Phys., 38, p. 2368-2372 (1999). [80]X. Jun, C. S. Yang, H. R. Jang, and C. K. Choi, “Chemical Structure Evolution of SiOCH Films with Low Dielectric Constant during PECVD and Postannealing”, J. Electrochem. Soc., 150, p. F206-F210 (2003). [81]S. P. Murarka, "Low Dielectric Constant Materials for Interlayer Dielectrics," Solid State Technol., 39, p. 83-90 (1996). [82] M. J. Loboda, “New solutions for intermetal dielectrics using trimethylsi-lane-based PECVD processes”, Microelectronic Engineering, 50, p. 15-23 (2000). [83]S. Yang, J. C. H. Pai, C. S. Pai, G. Dabbagh, O. Nalamasu, E. Reichmanis, J. Seputro, and Y. S. Obeng, “Processing and characterization of ultralow-dielectric constant organosilicate”, J. Vac. Sci. Tech. B, 19, p. 2155-2161 (2001). [84]G. Lucovsky, D. E. Ibbotson, and D. W. Hess, “Characterization of Plasma En-hanced CVD Processes”, Eds., Mater. Res. Soc. Symp. Proc. 165 (1989). [85]S. V. Nguyen, “Plasma-Assisted Chemical Vapor Deposition”, Handbook of Thin-Film Deposition Processes and Techniques, Klaus K. Schuegraf, Ed., Noyes Publications, Park Ridge, NJ, pp. 112-141 (1998). [86]T. Ishimara, Y. Shioya, H. Ikakura, M. Nozawa, Y. Nishimoto, S. Ohgawara, and K. Maeda, “Development of low-k copper barrier films deposited by PE-CVD using HMDSO, N2O and NH3 ”, Proceedings of 2001 IEEE VLSI, p. 36-38 (2001). [87]C. C. Chiang, M. C. Chen, C. C. Ko, Z. C. Wu, S. M. Jang, and M. S. Liang, “Physical and Barrier Properties of Plasma-Enhanced Chemical Vapor Deposited α-SiC:H Films from Trimethylsilane and Tetramethylsilane”, Jpn. J. Appl. Phys., 42, p. 4273-4277 (2003). [88]J. Martin, S. Filipiak, T. Stephens, F. Huang, M. Aminpur, J. Mueller, E. Demircan, L. Zhao, J. Werking, C. Goldberg, S. Park, T. Sparks, and C. Esber, “Integration of SiCN as a low k etch stop and Cu passivation in a high perform-ance Cu/low k interconnect”, Proceedings of 2002 IEEE VLSI, p. 42-44 (2002). [89]K. Hinode, 1. Asano, and Y. Homma, “Void formation mechanism in VLSI aluminum metallization”, IEEE Trans. Electron Devices, 36, p. 1050-1055 (1989). [90]K. Hinode and Y. Homma, “Improvement of electromigration resistance of layered aluminum conductors.” in Proc. 28lh Inf. Reliability Physic Sym., p. 25-30 (1990). [91]T. Fujii, K. Okuyama, S. Morihe, Y. Torii, H. Katto, and T. Agatsu-ma,“Comparison of electromigration phenomenon between aluminum intercon-nection of various multilayered materials,” in Proc. 6th VLSI Multilevel Intercon-nection Cons., p. 477-483 (1989). [92]T. Kikkawa, H. Aoki, E. Ikawa, and J. Drynan, “A quarter-micron interconnec-tion technology using AI-Si-Cu/TiN alternated layers”, in IEDM Tech. Dig., p. 281-284 (1991). [93]International Technology Roadmap for Semiconductors. http://public.itrs.net. In-terconnects [94]F. M. D’Heurle, “Electromigration and Failure in Electronics: An Introduction,” in Proc. IEEE., 59, p. 1409 -1971 (1971). [95]H. B. Huntington and A. R. Grone, “Current-induced Marker Motion in Gold Wires”, J. Phys.Chem. Solids, 20, p. 76-87 (1961). [96]E. T. Ogawa, K. D. Lee, V. A. Blaschke, and P. S. Ho, “Electromigration Reliabil-ity Issue in Dual-Damascene Cu Interconnections”, IEEE Tran. Reliability, 51, p. 403-419 (2000). [97]K. N. Tu, “Electromigration in Stress Thin Film”, Phys.Rev. B., 45, p.1409-1413 (1992). [98]H. B. Huntington and A. R. Grone, “Current-induced Marker Motion in Gold Wires”, J. Phys.Chem. Solids, 20, p. 76-87 (1961). [99]J. R. Lioyd, and J. J. Clement, “Electromigration in Copper Conductors”, Thin Soild Films, 262, p. 135-141 (1995). [100]A. Tezaki, T. Mineta, and H. Egawa, “Measurement of Three Dimensional Stress and Modeling of Stress Induced Migration Failure in Aluminum Interconnects”, in Proc. Int. Reliab. Phys. Symp., p. 221-229 (1990). [101]L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, and P. D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films: Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc. 148, p. F148-F153 (2001). [102]P. T. Liu, T. C. Chang, H. Su, Y. S. Mor, Y. L. Yang, H. Chung, J. Hou, and S. M. Sze,“Improvement in Integration Issues for Organic Low-k Hybrid-Organic-Siloxane-Polymer”, J. Electrochem. Soc. 148, p. F30-F34 (2001). [103]Y. L. Cheng, Y. L. Wang, C. W. Liu, Y. L. Wu, K. Y. Lo, C. P. Liu, and J. K. Lan, “Characterization and reliability of low dielectric constant fluorosilicate glass and silicon rich oxide process for deep sub-micron device application”, Thin Solid Films, 398, p. 533-538 (2001). [104]G. Passemard, P. Fugier, P. Nobel, F. Pires, and O. Demolliens, “Study of fluo-rine stability in fluoro-silicate glass and effects on dielectric properties”, Micro-electron. Eng., 33, p. 335-342 (1997). [105]H. Yang and G. Lucovsky, “Stability of Si-O-F low-k dielectrics: Attack by wa-ter molecules as function of near-neighbor Si-F bonding arrangements”, J. Vac. Sci. Technol. A 16, p. 1525-1528 (1998). [106]Y. L. Cheng, Y. L. Wang, C. W. Liu, Y. L. Wu, K. Y. Lo, C. P. Liu, and J. K. Lan, “Optimization of post-N2 treatment and undoped-Si-glass cap to improve metal wring delamination in deep submicron high-density plasma-fluorinated silica glass intermetal dielectric application”, J. Vac. Sci. Technol. B, 22, p. 1792-1796 (2004). [107]S. Lee and J. W. Park, “Effect of Oxygen Post Plasma Treatment on Character-istics of Electron Cyclotron Resonance CVD Fluorine-Doped Silicon Dioxide Films Using SiF4 and O2 Gas Sources”, J. Electrochem. Soc., 146, p. 697-701 (1999). [108]W. C. Hsiao, C. P. Liu, Y. L. Wang, and Y. L. Cheng, “Characterization and thermal stability of fluorosilicate glass films deposited by high density plasma chemical vapor deposition with different bias power”, Thin Solid Films, 498, p. 289-293 (2006). [109]M. K. Bhan, J. Huang, and D. Cheung, “Deposition of stable, low κ and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films”, Thin Solid Films, 308, p. 507-511 (1997). [110]M. J. Shapiro, T. Matsuda, S. V. Nguyen, C. Parks, and C. Dziobkowski, “Fluo-rine Diffusion from Fluorosilicate Glass”, J. Electrochem. Soc., 143, p. L156-L158 (1997). [111]K. Tomioka, E. Soda, N. Kobayashi, M. Takata, S. Uda, K. Ogushi, Y. Yuba, and Y. Akasaka, “Influences of atomic hydrogen on porous low-k dielectric for 45-nm node”, Thin Solid Films, 515, p. 5031-5034 (2007). [112]D. D. Roest, Y. Travaly, J. Beynet, H. Sprey, J. Labat, C. Huffman, P. Verdonck, S. Kaneko, K. Matsushita, N. Kobayashi, and G. Beyer, “Variation in process con-ditions of porogen-based low-k films: A method to improve performance without changing existing process steps in a sub-100 nm Cu damascene integration route”, Microelectron. Eng., 87, p. 311-315 (2010). [113]A. Grill and V. Patel. “Low dielectric constant films prepared by plas-ma-enhanced chemical vapor deposition from tetramethylsilane”, J. Appl. Phys., 85, p. 3314-3318 (1999). [114]J. Widodo, L. N. Goh, W. Lu, S. G. Mhaisalkar, K. Y. Zeng, and L. C. Hsia, “Comparative Study of Trimethyl Silane and Tetramethylcyclotetrasiloxane-Based Low-k Films”, J. Electrochem. Soc., 152, p. G246-G251 (2005). [115]Q. Wu and K. K. Gleason, “Plasma-enhanced chemical vapor deposition of low-k dielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors”, J. Vac. Sci. Technol. A, 21, p. 388-394 (2003). [116]Y. L. Cheng, Y. L. Wang, Y. Juang, M. L. O’Neill, A. S. Lukas, E. J. Karwachi, S. A. McGuigan, A. Tang, and C. W. Wu, “Organofluorosilicate glass: A dense low-k dielectric with superior materials properties”, J. Phy. Chem. Solids, 69, p. 518-522 (2008). [117]M. Petersen, M. T. Schulberg, and L. A. Gochberg, “Density functional theory analysis of infrared modes in carbon-incorporated SiO2”, Appl. Phys. Lett., 82, p. 2041-2043 (2003). [118]V. Ligatchev, T. K. S. Wong, B. Liu, and Rusli, “Atomic structure and defect densities in low dielectric constant carbon doped hydrogenated silicon oxide films, deposited by plasma-enhanced chemical vapor deposition”, J. Appl. Phys., 92, p. 4605-4611 (2002). [119]T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei, and S. M. Sze, “Recovering Dielectric Loss of Low Dielectric Constant Organic Siloxane during the Photoresist Removal Process”, J. Electrochem. Soc., 149, p. F81-F84 (2003). [120]K. Kim, J. Song, D. Kwon, and G. S. Lee, “Effect of fluorine on chemical and electrical properties of room temperature oxide films prepared by plasma en-hanced chemical vapor deposition” Appl. Phys. Lett., 72, p. 1247-1249 (1998). [121]J. M. Park and S. W. Rhee, “Remote Plasma-Enhanced Chemical Vapor Deposi-tion of Nanoporous Low-Dielectric Constant SiCOH Films Using Vinyltrimethyl-silane”, J. Electrochem. Soc., 149, p. F92-F97 (2002). [122]J.-S. Chou and S.-C. Lee, “Effect of porosity on infrared‐absorption spectra of silicon dioxide”, J. Appl. Phys., 77, p. 1805-1807 (1995). [123]Y. W. Koh, K. P. Loh, L. Rong, A. T. S. Wee, L. Huang, and J. Sudijono, “Low dielectric constant a-SiOC:H films as copper diffusion barrier”, J. Appl. Phys., 93, p. 1241-1245 (2003). [124]T. Ishimaru, Y. Shioya, H. Ikakura, M. Nozawa, S. Ohgawara, T. Ohdaira, R. Suzuki, and K. Maeda, “Properties of Low-k Copper Barrier SiOCH Film Depos-ited by PECVD Using Hexamethyldisiloxane and N2O”, J. Electrochem. Soc., 150, p. F83-F89 (2003). [125]Y. Shioya, K. Maeda, T. Ishimaru, H. Ikakura, T. Masubuchi, T. Ohdaira, and R. Suzuki, “Properties of Low-k Cu Barrier SiOCNH Film Deposited by Plas-ma-Enhanced Chemical Vapor Deposition using Hexamethyldisiloxane and Am-monia Gases”, Jpn. J. Appl. Phys., 43, p. 750-756 (2004). [126]Z. Tokei, K. Croes, and G. P. Beyer, “Reliability of copper low-k interconnects”, Microelectron. Eng., 87, p. 348-354 (2010). [127]F. Chen and M. Shinosky, “Addressing Cu/Low- Dielectric TDDB-Reliability Challenges for Advanced CMOS Technologies”, IEEE Trans. Electron Device, 56, p. 2-12 (2009). [128]P. S. Ho, K.–D. Lee, S. Yoon, X. Lu, and E. T. Ogawa, “Effect of low k dielectrics on electromigration reliability for Cu interconnects”, Mater. Sci. Semicond. Process., 7, p. 157-163 (2004). [129]T. Usui, H. Miyajima, H. Masuda, K. Tabuchi, K. Watanabe, T. Hasegawa, and H. Shibata, “Physical and Barrier Properties of Plasma Enhanced Chemical Vapor Deposition α-SiC:N:H Films”, Jpn. J. Appl. Phys., 42, p. 4489-4494 (2003). [130]T. Fujii, K. Okuyama, S. Moribe, Y. Torri, H. Katto, and T. Agatsuma, “Comparison of electromigration phenomenon between aluminum interconnection of various multilayered materials”, in Proc. 6th VLSI Multilevel Interconnection Conf., p. 477-483 (1989). [131]J. Tao, N. W. Cheung, and C. Hu, “Metal Electromigration Damage Healing Under Bidirectional Current Stress”, IEEE Electron Device Lett., 14, p. 554-556 (1993). [132]Bohr, Mark T., “Interconnect Scaling - The Real Limiter to High Performance ULSI”, Proceedings of the 1995 IEEE International Electron Devices Meeting, p. 241-242 (1995).
|