|
1. G. Allen, Variational inequalities, complementarity problems and duality theorems, J. Math. Anal. Appl., 58 (1997), 1-10. 2. T. R. Bergstrom, R. Park and T. Rader, Preferences which have open graphs, J. Math. Econom., 3(1976), 265-268. 3. K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1985. 4. A. Broglin and H. Keiding, Existence of equilibrium actions and of equilibrium: A note on the ''new'' existence theorem, J. Math. Econom., 3(1976), 313-316. 5. H. Brezis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan''s minimax principle, Bull. Un. Mat. Ital., 6(1972), 293-300. 6. S. Y. Chang, On the Nash equilibrium, Soochow J. Math., 16(1990), 241-248. 7. G. Debreu, A social equilibrium existence theorem, Proc. Natl. Acad. Sci. USA, 38(1952), 886-893. 8. X. P. Ding and K. K. Tan, A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Coll. Math., (1992), 233-247. 9. X. P. Ding, W. K. Kim and K. K. Tan, A new minimax inequality on H-space with applications, 41(1990), 457-473. \item[10.] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. 11. K. Fan, A generalization of Tychonoff''s fixed point theorem, Math. Ann., 142(1961), 305-310. 12. K. Fan, A minimax inequality and applications, in Inequalities III, Editor O.Shisha, p.p. 101-113.(Academic Press, New York, 1972.) 13. K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266(1984), 519-537. 14. B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplex, Fund. Math., 14(1929), 132-137. 15. W. K. Kim, George Xian-Zhi Yuan, Existence of equilibrium for generalized games and generalized social systems with coordination, Nonlinear Analysis, 45(2001), 169-188. 16. W. K. Kim and K. K. Tan, New existence theorems of equilibrium and applications, Nonlinear Analysis, 47(2001), 531-542. 17. L. J. Lin, Z. T. Yu, Q. H. Ansari, and L. P. Lai, Fixed point and maximal element theorems with applications to abstract economies and minimax inequalities (to appear in J. Math. Anal. Appl.). 18. E. Michael, Continuous selections I, Ann. Math., 63(1956), 361-382. 19. W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, J. Math. Econom., 2(1975), 345-348. 20. K. K. Tan, Comparision theorems on minimax inequalities, variational inequalities and fixed point theorems, J. London Math. Soc., 23(1983), 555-562. 21. K. K. Tan and X. Z. Yuan, A minimax inequality with applications to existence of equilibrium point, Bull. Austral. Math. Soc., 47(1993), 483-503. 22. K. K. Tan and X. Z. Yuan, Approximation methods and equilibrium of generalized games, Proc. Amer. Math. Soc., 122(1994), 503-510. 23. E. Tarafdar and H. B. Thomopson, On Fan''s minimax principle, J. Austral. Math. Soc., 26(SerA.)(1978), 220-226. 24. C. L. Yen, A minimax inequality and it''s applications to variational inequalities, Parific J. Math., 97(1981), 277-281. 25. N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom., 12(1983), 233-245. 26. G. X-Z. Yuan, G. Isac, K.K. Tan and J. Yu, The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria, Acta. Appl. Math., 54(1998), 135-166. 27. G. X-Z. Yuan, The study of minimax inequalities and applications to economies and variational inequalities, Mem. Amer. Math. Soc., 132, No.625(1998), 1-140.
|