跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/11 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊智升
研究生(外文):Chih-Sheng Chuang
論文名稱:具有模糊控制函數的一般賽局的平衡點存在定理
論文名稱(外文):Equilibrium Existence Theorems For A Generalized Game With A Fuzzy Constraint And Applications To Minimax Inequalities
指導教授:林來居林來居引用關係
指導教授(外文):Lai-Jiu Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:31
中文關鍵詞:賽局理論抽象經濟模糊函數最大最小不等式
外文關鍵詞:Game theoryabstract economyfuzzy constraintminimax inequalities
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在這一篇論文裡面,我們首先去建立兩種具有模糊控制函數的非緊致的一般賽局的平衡點存在定理。之後在應用上,我們使用得到的平衡點存在定理去證明系統的最大最小不等式。
In this paper, we first establish two existence theorems of equilibrium for a non-compact generalized game with a fuzzy constraint. Next, as applications, we shall prove system of generalized quasi-minimax inequalities by using equilibrium existence theorems.
1、 Introduction..........................1
2、 Preliminaries.........................4
3、 Equilibrium Existence Theorems
of Generalized Game....................9
4、 Some Applications To Minimax
Inequalities….......................19
5、 References...........................27
1. G. Allen, Variational inequalities, complementarity
problems and duality theorems, J. Math. Anal. Appl., 58
(1997), 1-10.
2. T. R. Bergstrom, R. Park and T. Rader, Preferences which
have open graphs, J. Math. Econom., 3(1976), 265-268.
3. K. C. Border, Fixed point theorems with applications to
economics and game theory, Cambridge University Press, 1985.
4. A. Broglin and H. Keiding, Existence of equilibrium actions and of equilibrium: A note on the ''new'' existence theorem, J. Math. Econom., 3(1976), 313-316.
5. H. Brezis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan''s minimax principle, Bull. Un. Mat. Ital., 6(1972), 293-300.
6. S. Y. Chang, On the Nash equilibrium, Soochow J. Math., 16(1990), 241-248.
7. G. Debreu, A social equilibrium existence theorem, Proc. Natl. Acad. Sci. USA, 38(1952), 886-893.
8. X. P. Ding and K. K. Tan, A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Coll. Math., (1992), 233-247.
9. X. P. Ding, W. K. Kim and K. K. Tan, A new minimax inequality on H-space with applications, 41(1990), 457-473.
\item[10.] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
11. K. Fan, A generalization of Tychonoff''s fixed point theorem, Math. Ann., 142(1961), 305-310.
12. K. Fan, A minimax inequality and applications, in Inequalities III, Editor O.Shisha, p.p. 101-113.(Academic Press, New York, 1972.)
13. K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266(1984), 519-537.
14. B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplex, Fund. Math., 14(1929), 132-137.
15. W. K. Kim, George Xian-Zhi Yuan, Existence of equilibrium for generalized games and generalized social systems with coordination, Nonlinear Analysis, 45(2001), 169-188.
16. W. K. Kim and K. K. Tan, New existence theorems of equilibrium and applications, Nonlinear Analysis, 47(2001), 531-542.
17. L. J. Lin, Z. T. Yu, Q. H. Ansari, and L. P. Lai, Fixed point and maximal element theorems with applications to abstract economies and minimax inequalities (to appear in J. Math. Anal. Appl.).
18. E. Michael, Continuous selections I, Ann. Math., 63(1956), 361-382.
19. W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, J. Math. Econom., 2(1975), 345-348.
20. K. K. Tan, Comparision theorems on minimax inequalities, variational inequalities and fixed point theorems, J. London Math. Soc., 23(1983), 555-562.
21. K. K. Tan and X. Z. Yuan, A minimax inequality with applications to existence of equilibrium point, Bull. Austral. Math. Soc., 47(1993), 483-503.
22. K. K. Tan and X. Z. Yuan, Approximation methods and equilibrium of generalized games, Proc. Amer. Math. Soc., 122(1994), 503-510.
23. E. Tarafdar and H. B. Thomopson, On Fan''s minimax principle, J. Austral. Math. Soc., 26(SerA.)(1978), 220-226.
24. C. L. Yen, A minimax inequality and it''s applications to variational inequalities, Parific J. Math., 97(1981), 277-281.
25. N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom., 12(1983), 233-245.
26. G. X-Z. Yuan, G. Isac, K.K. Tan and J. Yu, The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria, Acta. Appl. Math., 54(1998), 135-166.
27. G. X-Z. Yuan, The study of minimax inequalities and applications to economies and variational inequalities, Mem. Amer. Math. Soc., 132, No.625(1998), 1-140.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top