陳仕珊。2012。高鹽甲烷太古生物之熱休克蛋白DnaK、DnaJ和GrpE基因的選殖與特性分析。國立中興大學生命科學系研究所碩士論文。陳政宇。2014。高鹽甲烷太古生物於鹽度與溫度逆境下之轉錄表現趨勢分析。國立中興大學生命科學系研究所碩士論文。柯宗佑。2009。高鹽甲烷太古生物ClpB蛋白之特性分析。國立中興大學生命科學系研究所碩士論文。林勇安。2012。高鹽甲烷太古生物第一類型與第二類型分子伴護因子之特性分析。國立中興大學生命科學系研究所碩士論文。張浩文。2009。利用嗜鹽甲烷太古生物分子伴護因子GroEL和GroES 提升Escherichia coli 表現水溶性太古生物重組蛋白。國立中興大學生命科學系學士論文。
Alberti, S., C. Esser, and J. Hohfeld. 2003. BAG-1--a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225-231.
Alkaabi, K. M., A. Yafea, and S. S. Ashraf. 2005. Effect of pH on thermal- and chemical-induced denaturation of GFP. Appl Biochem Biotechnol 126:149-156.
Baldwin, R. L. 1986. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A 83:8069-8072.
Baneyx, F., and M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399-1408.
Barthel, T. K., J. D. Zhang, and G. C. Walker. 2001. ATPase-Defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release. Journal of Bacteriology 183:5482-5490.
Baumeister, W., J. Walz, F. Zuhl, and E. Seemuller. 1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367-380.
Ben-Zvi, A., P. De Los Rios, G. Dietler, and P. Goloubinoff. 2004. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones. J Biol Chem 279:37298-37303.
Ben-Zvi, A. P., and P. Goloubinoff. 2002. Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J Biol Chem 277:49422-49427.
Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578-586.
Brown, A. D. 1976. Microbial Water Stress. Bacteriol Rev 40:803-846.
Bukau, B., E. Deuerling, C. Pfund, and E. A. Craig. 2000. Getting newly synthesized proteins into shape. Cell 101:119-122.
Bukau, B., and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366.
Burns, K. E., and K. H. Darwin. 2010. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell Microbiol 12:424-431.
Chang, L., E. B. Bertelsen, S. Wisen, E. M. Larsen, E. R. P. Zuiderweg, and J. E. Gestwicki. 2008. High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK. Analytical Biochemistry 372:167-176.
Chang, L., A. D. Thompson, P. Ung, H. A. Carlson, and J. E. Gestwicki. 2010. Mutagenesis Reveals the Complex Relationships between ATPase Rate and the Chaperone Activities of Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK). Journal of Biological Chemistry 285:21282-21291.
Chen, B., D. B. Zhong, and A. Monteiro. 2006. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. Bmc Genomics 7.
Chen, X., D. S. Sullivan, and T. C. Huffaker. 1994. Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci U S A 91:9111-9115.
Cuellar, J., J. Martin-Benito, S. H. Scheres, R. Sousa, F. Moro, E. Lopez-Vinas, P. Gomez-Puertas, A. Muga, J. L. Carrascosa, and J. M. Valpuesta. 2008. The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 15:858-864.
Cuellar, J., J. Perales-Calvo, A. Muga, J. M. Valpuesta, and F. Moro. 2013. Structural Insights into the Chaperone Activity of the 40-kDa Heat Shock Protein DnaJ BINDING AND REMODELING OF A NATIVE SUBSTRATE. Journal of Biological Chemistry 288:15065-15074.
Dalbey, R. E., P. Wang, and J. M. van Dijl. 2012. Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 76:311-330.
David R. Boone, I. M. Mathrani, Y. Liu, J. A. G. F. Menaia, R. A. M. and, and J. E. Boone. 1993. Isolation and Characterization of Methanohalophilus portucalensis sp. nov. and DNA Reassociation Study of the Genus Methanohalophilus. IJS43:430-437.
Desantis, M. E., E. A. Sweeny, D. Snead, E. H. Leung, M. S. Go, K. Gupta, P. Wendler, and J. Shorter. 2014. Conserved distal loop residues in the Hsp104 and ClpB middle domain contact nucleotide-binding domain 2 and enable Hsp70-dependent protein disaggregation. J Biol Chem 289:848-867.
Diamant, S., N. Eliahu, D. Rosenthal, and P. Goloubinoff. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586-39591.
Diamant, S., and P. Goloubinoff. 1998. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Biochemistry 37:9688-9694.
Diamant, S., D. Rosenthal, A. Azem, N. Eliahu, A. P. Ben-Zvi, and P. Goloubinoff. 2003. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol 49:401-410.
Doyle, S. M., O. Genest, and S. Wickner. 2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14:617-629.
Doyle, S. M., J. Shorter, M. Zolkiewski, J. R. Hoskins, S. Lindquist, and S. Wickner. 2007. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 14:114-122.
Ellis, R. J. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597-604.
Fayet, O., T. Ziegelhoffer, and C. Georgopoulos. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379-1385.
Figueiredo, L., D. Klunker, D. Ang, D. J. Naylor, M. J. Kerner, C. Georgopoulos, F. U. Hartl, and M. Hayer-Hartl. 2004. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J Biol Chem 279:1090-1099.
Frydman, J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603-647.
Genest, O., J. R. Hoskins, J. L. Camberg, S. M. Doyle, and S. Wickner. 2011. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci U S A 108:8206-8211.
Gidalevitz, T., A. Ben-Zvi, K. H. Ho, H. R. Brignull, and R. I. Morimoto. 2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471-1474.
Gowda, N. K., G. Kandasamy, M. S. Froehlich, R. J. Dohmen, and C. Andreasson. 2013. Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-dependent degradation of misfolded cytosolic proteins. Proc Natl Acad Sci U S A 110:5975-5980.
Haak, J., and K. C. Kregel. 2008. 1962-2007: a cell stress odyssey. Novartis Found Symp 291:3-15; discussion 15-22, 137-140.
Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557-580.
Harrison, C. 2003. GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8:218-224.
Harrison, C. J., M. Hayer-Hartl, M. Di Liberto, F. Hartl, and J. Kuriyan. 1997. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431-435.
Hartl, F. U., A. Bracher, and M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324-332.
Hartl, F. U., and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852-1858.
Haslberger, T., J. Weibezahn, R. Zahn, S. Lee, F. T. Tsai, B. Bukau, and A. Mogk. 2007. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol Cell 25:247-260.
Hemmingsen, S. M., C. Woolford, S. M. van der Vies, K. Tilly, D. T. Dennis, C. P. Georgopoulos, R. W. Hendrix, and R. J. Ellis. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330-334.
Hinault, M. P., A. Ben-Zvi, and P. Goloubinoff. 2006. Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30:249-265.
Hochstrasser, M. 2009. Origin and function of ubiquitin-like proteins. Nature 458:422-429.
Horwich, A. L., W. A. Fenton, E. Chapman, and G. W. Farr. 2007. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115-145.
Houry, W. A. 2001. Chaperone-assisted protein folding in the cell cytoplasm. Curr Protein Pept Sci 2:227-244.
Houry, W. A., D. Frishman, C. Eckerskorn, F. Lottspeich, and F. U. Hartl. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147-154.
Humbard, M. A., H. V. Miranda, J. M. Lim, D. J. Krause, J. R. Pritz, G. Zhou, S. Chen, L. Wells, and J. A. Maupin-Furlow. 2010. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463:54-60.
Johnson, C., G. N. Chandrasekhar, and C. Georgopoulos. 1989. Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro. J Bacteriol 171:1590-1596.
Kim, D. Y., and K. K. Kim. 2003. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278:50664-50670.
Kityk, R., J. Kopp, I. Sinning, and M. P. Mayer. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863-874.
Klumpp, M., W. Baumeister, and L. O. Essen. 1997. Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91:263-270.
Klunker, D., B. Haas, A. Hirtreiter, L. Figueiredo, D. J. Naylor, G. Pfeifer, V. Muller, U. Deppenmeier, G. Gottschalk, F. U. Hartl, and M. Hayer-Hartl. 2003. Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 278:33256-33267.
Lai, M. C., and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J Bacteriol 174:7474-7477.
Lai, M. C., T. Y. Hong, and R. P. Gunsalus. 2000. Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. J Bacteriol 182:5020-5024.
Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352-5358.
Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl Environ Microbiol 65:828-833.
Laksanalamai, P., T. A. Whitehead, and F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2:315-324.
Langer, T., C. Lu, H. Echols, J. Flanagan, M. K. Hayer, and F. U. Hartl. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683-689.
Lanzetta, P. A., L. J. Alvarez, P. S. Reinach, and O. A. Candia. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95-97.
Large, A. T., M. D. Goldberg, and P. A. Lund. 2009. Chaperones and protein folding in the archaea. Biochem Soc Trans 37:46-51.
Lee, S., M. E. Sowa, Y. H. Watanabe, P. B. Sigler, W. Chiu, M. Yoshida, and F. T. Tsai. 2003. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229-240.
Leroux, M. R., M. Fandrich, D. Klunker, K. Siegers, A. N. Lupas, J. R. Brown, E. Schiebel, C. M. Dobson, and F. U. Hartl. 1999. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18:6730-6743.
Li, J., X. Qian, and B. Sha. 2003. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11:1475-1483.
Li, J. Z., X. G. Qian, and B. D. Sha. 2009. Heat Shock Protein 40: Structural Studies and Their Functional Implications. Protein and Peptide Letters 16:606-612.
Li, Y., Z. Zheng, A. Ramsey, and L. Chen. 2010. Analysis of peptides and proteins in their binding to GroEL. J Pept Sci 16:693-700.
Liberek, K., A. Lewandowska, and S. Zietkiewicz. 2008. Chaperones in control of protein disaggregation. EMBO J 27:328-335.
Lin, Z., and H. S. Rye. 2006. GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41:211-239.
Lu, Z., and D. M. Cyr. 1998. Protein folding activity of Hsp70 is modified differentially by the Hsp40 co-chaperones Sis1 and Ydj1. Journal of Biological Chemistry 273:27824-27830.
Macario, A. J., L. Brocchieri, A. R. Shenoy, and E. Conway de Macario. 2006. Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. J Mol Evol 63:74-86.
Macario, A. J., M. Lange, B. K. Ahring, and E. Conway de Macario. 1999. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923-967, table of contents.
Makino, Y., K. Amada, H. Taguchi, and M. Yoshida. 1997. Chaperonin-mediated folding of green fluorescent protein. J Biol Chem 272:12468-12474.
Martin-Benito, J., J. Grantham, J. Boskovic, K. I. Brackley, J. L. Carrascosa, K. R. Willison, and J. M. Valpuesta. 2007. The inter-ring arrangement of the cytosolic chaperonin CCT. EMBO Rep 8:252-257.
Maupin-Furlow, J. 2012. Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol 10:100-111.
Mayer, M. P. 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38:507-514.
Mayer, M. P., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670-684.
Mayer, M. P., H. Schroder, S. Rudiger, K. Paal, T. Laufen, and B. Bukau. 2000. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586-593.
McCarty, J. S., A. Buchberger, J. Reinstein, and B. Bukau. 1995. The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126-137.
Mehrabi, M., S. Hosseinkhani, and S. Ghobadi. 2008. Stabilization of firefly Luciferase against thermal stress by osmolytes. Int J Biol Macromol 43:187-191.
Miot, M., M. Reidy, S. M. Doyle, J. R. Hoskins, D. M. Johnston, O. Genest, M. C. Vitery, D. C. Masison, and S. Wickner. 2011. Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc Natl Acad Sci U S A 108:6915-6920.
Morgan, C. J., A. Miranker, and C. M. Dobson. 1998. Characterization of collapsed states in the early stages of the refolding of hen lysozyme. Biochemistry 37:8473-8480.
Neuwald, A. F., L. Aravind, J. L. Spouge, and E. V. Koonin. 1999. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27-43.
Nowicki, L., P. Leznicki, E. Morawiec, N. Litwinczuk, and K. Liberek. 2012. Role of a conserved aspartic acid in nucleotide binding domain 1 (NBD1) of Hsp100 chaperones in their activities. Cell Stress & Chaperones 17:361-373.
O'Brien, M. C., and D. B. McKay. 1995. How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity. J Biol Chem 270:2247-2250.
Pearce, M. J., J. Mintseris, J. Ferreyra, S. P. Gygi, and K. H. Darwin. 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104-1107.
Perales-Calvo, J., A. Muga, and F. Moro. 2010. Role of DnaJ G/F-rich domain in conformational recognition and binding of protein substrates. J Biol Chem 285:34231-34239.
Phipps, B. M., D. Typke, R. Hegerl, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister. 1993. Structure of a Molecular Chaperone from a Thermophilic Archaebacterium. Nature 361:475-477.
Rajan, V. B., and P. D'Silva. 2009. Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 9:433-446.
Ravid, T., and M. Hochstrasser. 2008. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679-690.
Raviol, H., H. Sadlish, F. Rodriguez, M. P. Mayer, and B. Bukau. 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510-2518.
Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571-573.
Rosenzweig, R., S. Moradi, A. Zarrine-Afsar, J. R. Glover, and L. E. Kay. 2013. Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction. Science 339:1080-1083.
Sakoh, M., K. Ito, and Y. Akiyama. 2005. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. J Biol Chem 280:33305-33310.
Samuel, D., T. K. Kumar, G. Ganesh, G. Jayaraman, P. W. Yang, M. M. Chang, V. D. Trivedi, S. L. Wang, K. C. Hwang, D. K. Chang, and C. Yu. 2000. Proline inhibits aggregation during protein refolding. Protein Sci 9:344-352.
Schroder, H., T. Langer, F. U. Hartl, and B. Bukau. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137-4144.
Schuermann, J. P., J. Jiang, J. Cuellar, O. Llorca, L. Wang, L. E. Gimenez, S. Jin, A. B. Taylor, B. Demeler, K. A. Morano, P. J. Hart, J. M. Valpuesta, E. M. Lafer, and R. Sousa. 2008. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31:232-243.
Schumacher, R. J., W. J. Hansen, B. C. Freeman, E. Alnemri, G. Litwack, and D. O. Toft. 1996. Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation. Biochemistry 35:14889-14898.
Seyffer, F., E. Kummer, Y. Oguchi, J. Winkler, M. Kumar, R. Zahn, V. Sourjik, B. Bukau, and A. Mogk. 2012. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA plus disaggregase at aggregate surfaces. Nature Structural & Molecular Biology 19:1347-1355.
Sharma, S. K., P. Christen, and P. Goloubinoff. 2009. Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 10:432-446.
Sharma, S. K., P. De Los Rios, P. Christen, A. Lustig, and P. Goloubinoff. 2010. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nature Chemical Biology 6:914-920.
Shen, Y., and L. M. Hendershot. 2005. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Molecular Biology of the Cell 16:40-50.
Shiber, A., and T. Ravid. 2014. Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome. Biomolecules 4:704-724.
Shih, C. J., and M. C. Lai. 2007. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis. Microbiology 153:2572-2583.
Siegert, R., M. R. Leroux, C. Scheufler, F. U. Hartl, and I. Moarefi. 2000. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621-632.
Tatzelt, J., S. B. Prusiner, and W. J. Welch. 1996. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15:6363-6373.
Thompson, A. D., S. M. Bernard, G. Skiniotis, and J. E. Gestwicki. 2012. Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones 17:313-327.
Tiwari, S., V. Kumar, G. G. Jayaraj, S. Maiti, and K. Mapa. 2013. Unique structural modulation of a non-native substrate by cochaperone DnaJ. Biochemistry 52:1011-1018.
Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490-493.
Ueda, I., F. Shinoda, and H. Kamaya. 1994. Temperature-dependent effects of high pressure on the bioluminescence of firefly Luciferase. Biophys J 66:2107-2110.
Varshavsky, A. 2011. The N-end rule pathway and regulation by proteolysis. Protein Sci 20:1298-1345.
Vogel, M., M. P. Mayer, and B. Bukau. 2006. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J Biol Chem 281:38705-38711.
Volker, C., and A. N. Lupas. 2002. Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1-22.
Walsh, P., D. Bursac, Y. C. Law, D. Cyr, and T. Lithgow. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567-571.
Wang, A. M., Y. Miyata, S. Klinedinst, H. M. Peng, J. P. Chua, T. Komiyama, X. Li, Y. Morishima, D. E. Merry, W. B. Pratt, Y. Osawa, C. A. Collins, J. E. Gestwicki, and A. P. Lieberman. 2013. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112-118.
Ward, W. W., and S. H. Bokman. 1982. Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21:4535-4540.
Wilbanks, S. M., and D. B. McKay. 1995. How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270:2251-2257.
Wu, B., A. Wawrzynow, M. Zylicz, and C. Georgopoulos. 1996. Structure-function analysis of the Escherichia coli GrpE heat shock protein. EMBO J 15:4806-4816.
Wu, Y., J. Li, Z. Jin, Z. Fu, and B. Sha. 2005. The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J Mol Biol 346:1005-1011.
Xu, Z., A. L. Horwich, and P. B. Sigler. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741-750.
Yamasaki, T., Y. Nakazaki, M. Yoshida, and Y. H. Watanabe. 2011. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. FEBS J 278:2395-2403.
Yebenes, H., P. Mesa, I. G. Munoz, G. Montoya, and J. M. Valpuesta. 2011. Chaperonins: two rings for folding. Trends Biochem Sci 36:424-432.
Zhang, H., L. Lin, C. Zeng, P. Shen, and Y. P. Huang. 2007. Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS Microbiol Lett 275:168-174.
Zmijewski, M. A., A. J. Macario, and B. Lipinska. 2004. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. J Mol Biol 336:539-549.
Zolkiewski, M. 2006. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol Microbiol 61:1094-1100.
Zwickl, P., D. Ng, K. M. Woo, H. P. Klenk, and A. L. Goldberg. 1999. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274:26008-26014.