跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方詩文
研究生(外文):Shih-Wen Fang
論文名稱:高鹽甲烷太古生物Methanohalophilus portucalensis FDF1T之分子伴護蛋白DnaK/DnaJ/GrpE ATP水解酶活性與受質蛋白復性功能之分析
論文名稱(外文):Functional analyses of ATPase activity and substrate protein renaturation of molecular chaperones DnaK/DnaJ/GrpE from Methanohalophilus portucalensis FDF1T
指導教授:賴美津
指導教授(外文):Mei-Chin Lai
口試委員:陳宜民吳韋訥
口試委員(外文):Yi-Ming ChenWailap-Victor Ng
口試日期:2015-01-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:熱休克蛋白分子伴護蛋白太古生物ATP水解酶活性
外文關鍵詞:DnaKDnaJGrpEmolecular chaperoneArchaeaATPase activity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
太古生物為三域物種中生存範圍最為廣泛且能生存於各種極端環境的生物。當細胞遭受外界環境因子的劇烈變化,如溫度、鹽度、酸鹼等逆境刺激,常會造成胞內新生成蛋白的錯誤摺疊或使已生成的蛋白質結構不穩定,進而失去生理功能及活性並導致聚集蛋白的形成。生物細胞為了維持胞內蛋白正常構形恆定,演化出分子伴護蛋白系統及蛋白酶體系統,以執行胞內蛋白質品質的控管。分子伴護蛋白系統中的DnaK/Hsp70(包含DnaJ及GrpE)系統普遍存在於真核生物與細菌中,也在嗜中溫的太古生物中被發現;其中高鹽甲烷太古生物Methanohalophilus portucalensis FDF1T的分子伴護蛋白dnaK、dnaJ及grpE基因的轉錄表現會受到鹽度及溫度逆境所誘導。本研究將已構築的MpDnaK、MpDnaJ及MpGrpE分別異源表現在E. coli BL21(DE3)RIL並以Ni Sepharose 6 Fast Flow column純化。利用孔雀石綠試劑偵測異源表現的MpDnaK ATP水解酶的活性,獲得催化效率(Catalytic efficiency,Kcat/Km)分別為107.72 (K)、142.28 (K+J)、118.51 (K+E)及235.22 (K+J+E) min-1.mM-1,其中以MpDnaK+J+E的處理組有最高的Vmax 345.10 pmol/min 與低 Km 1.49 mM,顯示添加共伴護蛋白MpDnaJ及MpGrpE會增加MpDnaK對基質ATP結合的親和性。添加共伴護蛋白之MpDnaK+J+E的ATP水解酶的活性於37°C下比活性(24.81 pmole/min/μg )較僅有MpDnaK的比活性(5.64 pmole/min/μg)高出4.39倍。添加化學伴護因子甜菜鹼(0.8 M)有助於提升MpDnaK+J+E的ATP水解酶活性(1.75倍)。以綠螢光蛋白(GFP)及螢火蟲螢光酵素(Luciferase)作為失活蛋白復性實驗的受質,分析MpDnaK系統的對錯誤摺疊蛋白的修復功能,經鹽酸處理(pH 1.5)的綠螢光蛋白及熱處理(40°C)的螢光酵素,MpDnaK+J+E皆能分別協助變性受質蛋白恢復約65.13%及65.46%的活性。此外,添加化學伴護因子10%甘油或0.8 M甜菜鹼於MpDnaK+J+E中,其熱變性的螢光酵素能恢復78.04%與70.86%的活性,由上述結果顯示分子伴護蛋白MpDnaK確實具有ATP水解酶活性及化學伴護因子能提升MpDnaK系統有效地修復失活蛋白的功能及活性。此外重組表現的太古生物型MpDnaK伴護蛋白系統之ATP水解酶最大催化速率明顯高於細菌型EcDnaK伴護蛋白系統約19倍;且在修復螢光酵素活性上,MpDnaK伴護蛋白系統亦優於EcDnaK伴護蛋白系統,顯示太古生物型MpDnaK分子伴護系統具應用於生物醫學相關去聚集蛋白的潛力。
Molecular chaperone plays an important role to assist newly synthesized polypeptides folding, and protects cells from stress induced proteins misfolding and aggregation. Heat shock protein DnaK belongs to molecular chaperone and cooperates with co-chaperone DnaJ and nucleotide exchange factor GrpE. And ATP is required for DnaK to activate and remodel their substrate client proteins. The molecular chaperone system DnaK (Hsp70) system is highly conserved in sequence and distribution in Bacteria and Eukarya, however, DnaK is also found in mesophilic archaeon. The dnaK, dnaJ and grpE genes from halophilic methanoarchaea Methanohalophilus portucalensis FDF1T have been demonstrated that could be induced by the salt and heat stresses. In this study, the dnaK, dnaJ and grpE gene from Methanohalophilus portucalensis FDF1T were heterologously overexpressed in E. coli BL21(DE3)RIL and the His6-tagged proteins were purified by Ni SepharoseTM 6 Fast Flow resin column. The ATPaes activities of MpDnaK system were measured by malachite green phosphate assay. The ATPase catalytic efficiency (Kcat/Km) of MpDnaK alone, K+J, K+E, and KJE were 107.72, 142.28, 118.51, and 235.22 min-1, respectively. The ATP binding kinetic of MpDnaK+J+E reached the highest value with Vmax at 345.10±11.90 pmol/min and low Km at 1.49±0.25 mM. These results indicated that ATPase activity of MpDnaK was stimulated by the addition of co-chaperone MpDnaJ and MpGrpE. The recombinant MpDnaK, MpDnaJ and MpGrpE are stable at 37°C, and the specific ATPase activity of MpDnaK alone (5.64 pmole/min/μg) were increased to 4.39 fold with co-chaperone MpDnaJ and MpGrpE (24.81 pmole/min/μg). Moreover, the ATPase activity of MpDnaK+J+E was increasd 1.75 fold with the additional of 0.8 M chemical chaperone betaine. The green fluorescent protein (GFP) and Luciferase were used as substrates for refolding activity. The the acid-denatured GFP was 65.13% recovered by MpDnaK+J+E. And the presence of MpDnaK+J+E could rescure 65.46% heat (40°C) denatured Luciferase. MpDnaK+J+E with the addition of chemical chaperone glycerol or betaine shows that 78.04% and 70.86% native Luciferase activity was recovered. Our results demonstrated that MpDnaK chaperone system have both ATPase and refolding activities. Moreover, the archaeal MpDnaK system showed higher ATPase and refolding activities than bacterial EcDnaK system which indicated the promising application potential in aggregated protein control.
中文摘要...........................I
英文摘要...........................II
目錄...........................III
表目錄...........................V
圖目錄...........................VI
壹、前言...........................1
貳、前人研究...........................3
一、細胞內聚集蛋白的形成...........................3
二、分子伴護蛋白 (Molecular chaperones)...........................4
(一)ClpB/Hsp100...........................5
(二)DnaK 分子伴護蛋白系統...........................6
(三)分子伴護因子(Chaperonins)...........................8
三、蛋白酶體系統...........................10
四、太古生物的分子伴護蛋白...........................13
五、高鹽甲烷太古生物Methanohalophilus portucalensis FDF1T中的分子伴護蛋白DnaK/DnaJ/GrpE...........................14
參、材料與方法...........................17
一、菌種...........................17
二、大腸桿菌培養基製備、培養與保存...........................17
(一)培養基製備...........................17
(二)大腸桿菌培養與保存...........................17
三、聚合酶連鎖反應(PCR) ...........................18
四、核酸膠體電泳分析及記錄...........................18
五、DNA片段純化與回收...........................19
六、DNA黏合反應...........................19
(一)pGEMR-T Vector System...........................19
(二)其他非商業化的質體...........................20
七、勝任細胞製備與轉型作用...........................20
(一)勝任細胞製備...........................20
(二)轉型作用...........................20
八、質體抽取及純化...........................21
九、構築Luciferase蛋白表現載體與表現系統...........................21
十、蛋白質表現與純化...........................22
(一)誘導表現MpDnaK、MpDnaJ及MpGrpE蛋白...........................23
(二)誘導表現綠螢光蛋白 (Green flourecent protein, GFP)...........................23
(三)誘導表現螢光酵素 (Luciferase) 蛋白...........................24
(四)蛋白質定量...........................24
(五)親和性交換樹脂Ni SepharoseTM 6 Fast Flow resin column純化蛋白...........................24
1.純化MpDnaK、MpDnaJ及MpGrpE蛋白...........................25
2.純化綠螢光蛋白 (GFP) 及螢光酵素 (Luciferase) ...........................26
(六)蛋白質濃縮...........................26
十一、蛋白質電泳 (SDS-PAGE)...........................27
十二、MpDnaK伴護蛋白系統之ATP水解酶活性測試...........................28
十三、受質蛋白復性實驗...........................29
(一)化學變性-綠螢光蛋白 (GFP)...........................29
(二)物理變性-螢光酵素 (Luciferase, Luc)...........................30
肆、結果與討論...........................32
一、MpDnaK、MpDnaJ及MpGrpE蛋白表現及純化...........................32
二、受質蛋白綠螢光蛋白 (GFP) 的蛋白表現與純化...........................33
三、螢光酵素 (Luciferase, Luc) 表現系統構築、Luciferase蛋白表現與純化...........................33
四、MpDnaK伴護蛋白系統之ATP水解酶活性測試...........................34
(一)MpDnaK ATP水解酶活性與反應時間的關係...........................34
(二)MpDnaK ATP水解酶活性與ATP基質濃度的關係...........................35
(三)溫度對MpDnaK伴護蛋白系統ATP水解酶活性之影響...........................37
(四)甜菜鹼對MpDnaK伴護蛋白系統ATP水解酶活性之影響...........................37
(五)鉀離子對MpDnaK伴護蛋白系統ATP水解酶活性之影響...........................38
五、MpDnaK伴護蛋白系統之受質復性分析...........................39
(一)MpDnaK伴護蛋白系統對酸變性綠螢光蛋白 (GFP) 之復性結果...........................39
(二)MpDnaK伴護蛋白系統對熱變性螢光酵素 (Luciferase) 蛋白之復性結果...........................40
(三)化學伴護因子與MpDnaK伴護蛋白系統修復熱變性的螢光酵素(Luciferase) 之影響........................... 41
伍、結論與展望...........................43
陸、表與圖...........................45
柒、參考文獻...........................62
陳仕珊。2012。高鹽甲烷太古生物之熱休克蛋白DnaK、DnaJ和GrpE基因的選殖與特性分析。國立中興大學生命科學系研究所碩士論文。
陳政宇。2014。高鹽甲烷太古生物於鹽度與溫度逆境下之轉錄表現趨勢分析。國立中興大學生命科學系研究所碩士論文。
柯宗佑。2009。高鹽甲烷太古生物ClpB蛋白之特性分析。國立中興大學生命科學系研究所碩士論文。
林勇安。2012。高鹽甲烷太古生物第一類型與第二類型分子伴護因子之特性分析。國立中興大學生命科學系研究所碩士論文。
張浩文。2009。利用嗜鹽甲烷太古生物分子伴護因子GroEL和GroES 提升Escherichia coli 表現水溶性太古生物重組蛋白。國立中興大學生命科學系學士論文。
Alberti, S., C. Esser, and J. Hohfeld. 2003. BAG-1--a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225-231.
Alkaabi, K. M., A. Yafea, and S. S. Ashraf. 2005. Effect of pH on thermal- and chemical-induced denaturation of GFP. Appl Biochem Biotechnol 126:149-156.
Baldwin, R. L. 1986. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A 83:8069-8072.
Baneyx, F., and M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399-1408.
Barthel, T. K., J. D. Zhang, and G. C. Walker. 2001. ATPase-Defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release. Journal of Bacteriology 183:5482-5490.
Baumeister, W., J. Walz, F. Zuhl, and E. Seemuller. 1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367-380.
Ben-Zvi, A., P. De Los Rios, G. Dietler, and P. Goloubinoff. 2004. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones. J Biol Chem 279:37298-37303.
Ben-Zvi, A. P., and P. Goloubinoff. 2002. Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J Biol Chem 277:49422-49427.
Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578-586.
Brown, A. D. 1976. Microbial Water Stress. Bacteriol Rev 40:803-846.
Bukau, B., E. Deuerling, C. Pfund, and E. A. Craig. 2000. Getting newly synthesized proteins into shape. Cell 101:119-122.
Bukau, B., and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366.
Burns, K. E., and K. H. Darwin. 2010. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell Microbiol 12:424-431.
Chang, L., E. B. Bertelsen, S. Wisen, E. M. Larsen, E. R. P. Zuiderweg, and J. E. Gestwicki. 2008. High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK. Analytical Biochemistry 372:167-176.
Chang, L., A. D. Thompson, P. Ung, H. A. Carlson, and J. E. Gestwicki. 2010. Mutagenesis Reveals the Complex Relationships between ATPase Rate and the Chaperone Activities of Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK). Journal of Biological Chemistry 285:21282-21291.
Chen, B., D. B. Zhong, and A. Monteiro. 2006. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. Bmc Genomics 7.
Chen, X., D. S. Sullivan, and T. C. Huffaker. 1994. Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci U S A 91:9111-9115.
Cuellar, J., J. Martin-Benito, S. H. Scheres, R. Sousa, F. Moro, E. Lopez-Vinas, P. Gomez-Puertas, A. Muga, J. L. Carrascosa, and J. M. Valpuesta. 2008. The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 15:858-864.
Cuellar, J., J. Perales-Calvo, A. Muga, J. M. Valpuesta, and F. Moro. 2013. Structural Insights into the Chaperone Activity of the 40-kDa Heat Shock Protein DnaJ BINDING AND REMODELING OF A NATIVE SUBSTRATE. Journal of Biological Chemistry 288:15065-15074.
Dalbey, R. E., P. Wang, and J. M. van Dijl. 2012. Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 76:311-330.
David R. Boone, I. M. Mathrani, Y. Liu, J. A. G. F. Menaia, R. A. M. and, and J. E. Boone. 1993. Isolation and Characterization of Methanohalophilus portucalensis sp. nov. and DNA Reassociation Study of the Genus Methanohalophilus. IJS43:430-437.
Desantis, M. E., E. A. Sweeny, D. Snead, E. H. Leung, M. S. Go, K. Gupta, P. Wendler, and J. Shorter. 2014. Conserved distal loop residues in the Hsp104 and ClpB middle domain contact nucleotide-binding domain 2 and enable Hsp70-dependent protein disaggregation. J Biol Chem 289:848-867.
Diamant, S., N. Eliahu, D. Rosenthal, and P. Goloubinoff. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586-39591.
Diamant, S., and P. Goloubinoff. 1998. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Biochemistry 37:9688-9694.
Diamant, S., D. Rosenthal, A. Azem, N. Eliahu, A. P. Ben-Zvi, and P. Goloubinoff. 2003. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol 49:401-410.
Doyle, S. M., O. Genest, and S. Wickner. 2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14:617-629.
Doyle, S. M., J. Shorter, M. Zolkiewski, J. R. Hoskins, S. Lindquist, and S. Wickner. 2007. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 14:114-122.
Ellis, R. J. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597-604.
Fayet, O., T. Ziegelhoffer, and C. Georgopoulos. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379-1385.
Figueiredo, L., D. Klunker, D. Ang, D. J. Naylor, M. J. Kerner, C. Georgopoulos, F. U. Hartl, and M. Hayer-Hartl. 2004. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J Biol Chem 279:1090-1099.
Frydman, J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603-647.
Genest, O., J. R. Hoskins, J. L. Camberg, S. M. Doyle, and S. Wickner. 2011. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci U S A 108:8206-8211.
Gidalevitz, T., A. Ben-Zvi, K. H. Ho, H. R. Brignull, and R. I. Morimoto. 2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471-1474.
Gowda, N. K., G. Kandasamy, M. S. Froehlich, R. J. Dohmen, and C. Andreasson. 2013. Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-dependent degradation of misfolded cytosolic proteins. Proc Natl Acad Sci U S A 110:5975-5980.
Haak, J., and K. C. Kregel. 2008. 1962-2007: a cell stress odyssey. Novartis Found Symp 291:3-15; discussion 15-22, 137-140.
Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557-580.
Harrison, C. 2003. GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8:218-224.
Harrison, C. J., M. Hayer-Hartl, M. Di Liberto, F. Hartl, and J. Kuriyan. 1997. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431-435.
Hartl, F. U., A. Bracher, and M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324-332.
Hartl, F. U., and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852-1858.
Haslberger, T., J. Weibezahn, R. Zahn, S. Lee, F. T. Tsai, B. Bukau, and A. Mogk. 2007. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol Cell 25:247-260.
Hemmingsen, S. M., C. Woolford, S. M. van der Vies, K. Tilly, D. T. Dennis, C. P. Georgopoulos, R. W. Hendrix, and R. J. Ellis. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330-334.
Hinault, M. P., A. Ben-Zvi, and P. Goloubinoff. 2006. Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30:249-265.
Hochstrasser, M. 2009. Origin and function of ubiquitin-like proteins. Nature 458:422-429.
Horwich, A. L., W. A. Fenton, E. Chapman, and G. W. Farr. 2007. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115-145.
Houry, W. A. 2001. Chaperone-assisted protein folding in the cell cytoplasm. Curr Protein Pept Sci 2:227-244.
Houry, W. A., D. Frishman, C. Eckerskorn, F. Lottspeich, and F. U. Hartl. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147-154.
Humbard, M. A., H. V. Miranda, J. M. Lim, D. J. Krause, J. R. Pritz, G. Zhou, S. Chen, L. Wells, and J. A. Maupin-Furlow. 2010. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463:54-60.
Johnson, C., G. N. Chandrasekhar, and C. Georgopoulos. 1989. Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro. J Bacteriol 171:1590-1596.
Kim, D. Y., and K. K. Kim. 2003. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278:50664-50670.
Kityk, R., J. Kopp, I. Sinning, and M. P. Mayer. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863-874.
Klumpp, M., W. Baumeister, and L. O. Essen. 1997. Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91:263-270.
Klunker, D., B. Haas, A. Hirtreiter, L. Figueiredo, D. J. Naylor, G. Pfeifer, V. Muller, U. Deppenmeier, G. Gottschalk, F. U. Hartl, and M. Hayer-Hartl. 2003. Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 278:33256-33267.
Lai, M. C., and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J Bacteriol 174:7474-7477.
Lai, M. C., T. Y. Hong, and R. P. Gunsalus. 2000. Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. J Bacteriol 182:5020-5024.
Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352-5358.
Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl Environ Microbiol 65:828-833.
Laksanalamai, P., T. A. Whitehead, and F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2:315-324.
Langer, T., C. Lu, H. Echols, J. Flanagan, M. K. Hayer, and F. U. Hartl. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683-689.
Lanzetta, P. A., L. J. Alvarez, P. S. Reinach, and O. A. Candia. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95-97.
Large, A. T., M. D. Goldberg, and P. A. Lund. 2009. Chaperones and protein folding in the archaea. Biochem Soc Trans 37:46-51.
Lee, S., M. E. Sowa, Y. H. Watanabe, P. B. Sigler, W. Chiu, M. Yoshida, and F. T. Tsai. 2003. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229-240.
Leroux, M. R., M. Fandrich, D. Klunker, K. Siegers, A. N. Lupas, J. R. Brown, E. Schiebel, C. M. Dobson, and F. U. Hartl. 1999. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18:6730-6743.
Li, J., X. Qian, and B. Sha. 2003. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11:1475-1483.
Li, J. Z., X. G. Qian, and B. D. Sha. 2009. Heat Shock Protein 40: Structural Studies and Their Functional Implications. Protein and Peptide Letters 16:606-612.
Li, Y., Z. Zheng, A. Ramsey, and L. Chen. 2010. Analysis of peptides and proteins in their binding to GroEL. J Pept Sci 16:693-700.
Liberek, K., A. Lewandowska, and S. Zietkiewicz. 2008. Chaperones in control of protein disaggregation. EMBO J 27:328-335.
Lin, Z., and H. S. Rye. 2006. GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41:211-239.
Lu, Z., and D. M. Cyr. 1998. Protein folding activity of Hsp70 is modified differentially by the Hsp40 co-chaperones Sis1 and Ydj1. Journal of Biological Chemistry 273:27824-27830.
Macario, A. J., L. Brocchieri, A. R. Shenoy, and E. Conway de Macario. 2006. Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. J Mol Evol 63:74-86.
Macario, A. J., M. Lange, B. K. Ahring, and E. Conway de Macario. 1999. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923-967, table of contents.
Makino, Y., K. Amada, H. Taguchi, and M. Yoshida. 1997. Chaperonin-mediated folding of green fluorescent protein. J Biol Chem 272:12468-12474.
Martin-Benito, J., J. Grantham, J. Boskovic, K. I. Brackley, J. L. Carrascosa, K. R. Willison, and J. M. Valpuesta. 2007. The inter-ring arrangement of the cytosolic chaperonin CCT. EMBO Rep 8:252-257.
Maupin-Furlow, J. 2012. Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol 10:100-111.
Mayer, M. P. 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38:507-514.
Mayer, M. P., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670-684.
Mayer, M. P., H. Schroder, S. Rudiger, K. Paal, T. Laufen, and B. Bukau. 2000. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586-593.
McCarty, J. S., A. Buchberger, J. Reinstein, and B. Bukau. 1995. The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126-137.
Mehrabi, M., S. Hosseinkhani, and S. Ghobadi. 2008. Stabilization of firefly Luciferase against thermal stress by osmolytes. Int J Biol Macromol 43:187-191.
Miot, M., M. Reidy, S. M. Doyle, J. R. Hoskins, D. M. Johnston, O. Genest, M. C. Vitery, D. C. Masison, and S. Wickner. 2011. Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc Natl Acad Sci U S A 108:6915-6920.
Morgan, C. J., A. Miranker, and C. M. Dobson. 1998. Characterization of collapsed states in the early stages of the refolding of hen lysozyme. Biochemistry 37:8473-8480.
Neuwald, A. F., L. Aravind, J. L. Spouge, and E. V. Koonin. 1999. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27-43.
Nowicki, L., P. Leznicki, E. Morawiec, N. Litwinczuk, and K. Liberek. 2012. Role of a conserved aspartic acid in nucleotide binding domain 1 (NBD1) of Hsp100 chaperones in their activities. Cell Stress & Chaperones 17:361-373.
O'Brien, M. C., and D. B. McKay. 1995. How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity. J Biol Chem 270:2247-2250.
Pearce, M. J., J. Mintseris, J. Ferreyra, S. P. Gygi, and K. H. Darwin. 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104-1107.
Perales-Calvo, J., A. Muga, and F. Moro. 2010. Role of DnaJ G/F-rich domain in conformational recognition and binding of protein substrates. J Biol Chem 285:34231-34239.
Phipps, B. M., D. Typke, R. Hegerl, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister. 1993. Structure of a Molecular Chaperone from a Thermophilic Archaebacterium. Nature 361:475-477.
Rajan, V. B., and P. D'Silva. 2009. Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 9:433-446.
Ravid, T., and M. Hochstrasser. 2008. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679-690.
Raviol, H., H. Sadlish, F. Rodriguez, M. P. Mayer, and B. Bukau. 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510-2518.
Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571-573.
Rosenzweig, R., S. Moradi, A. Zarrine-Afsar, J. R. Glover, and L. E. Kay. 2013. Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction. Science 339:1080-1083.
Sakoh, M., K. Ito, and Y. Akiyama. 2005. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. J Biol Chem 280:33305-33310.
Samuel, D., T. K. Kumar, G. Ganesh, G. Jayaraman, P. W. Yang, M. M. Chang, V. D. Trivedi, S. L. Wang, K. C. Hwang, D. K. Chang, and C. Yu. 2000. Proline inhibits aggregation during protein refolding. Protein Sci 9:344-352.
Schroder, H., T. Langer, F. U. Hartl, and B. Bukau. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137-4144.
Schuermann, J. P., J. Jiang, J. Cuellar, O. Llorca, L. Wang, L. E. Gimenez, S. Jin, A. B. Taylor, B. Demeler, K. A. Morano, P. J. Hart, J. M. Valpuesta, E. M. Lafer, and R. Sousa. 2008. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31:232-243.
Schumacher, R. J., W. J. Hansen, B. C. Freeman, E. Alnemri, G. Litwack, and D. O. Toft. 1996. Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation. Biochemistry 35:14889-14898.
Seyffer, F., E. Kummer, Y. Oguchi, J. Winkler, M. Kumar, R. Zahn, V. Sourjik, B. Bukau, and A. Mogk. 2012. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA plus disaggregase at aggregate surfaces. Nature Structural & Molecular Biology 19:1347-1355.
Sharma, S. K., P. Christen, and P. Goloubinoff. 2009. Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 10:432-446.
Sharma, S. K., P. De Los Rios, P. Christen, A. Lustig, and P. Goloubinoff. 2010. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nature Chemical Biology 6:914-920.
Shen, Y., and L. M. Hendershot. 2005. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Molecular Biology of the Cell 16:40-50.
Shiber, A., and T. Ravid. 2014. Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome. Biomolecules 4:704-724.
Shih, C. J., and M. C. Lai. 2007. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis. Microbiology 153:2572-2583.
Siegert, R., M. R. Leroux, C. Scheufler, F. U. Hartl, and I. Moarefi. 2000. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621-632.
Tatzelt, J., S. B. Prusiner, and W. J. Welch. 1996. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15:6363-6373.
Thompson, A. D., S. M. Bernard, G. Skiniotis, and J. E. Gestwicki. 2012. Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones 17:313-327.
Tiwari, S., V. Kumar, G. G. Jayaraj, S. Maiti, and K. Mapa. 2013. Unique structural modulation of a non-native substrate by cochaperone DnaJ. Biochemistry 52:1011-1018.
Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490-493.
Ueda, I., F. Shinoda, and H. Kamaya. 1994. Temperature-dependent effects of high pressure on the bioluminescence of firefly Luciferase. Biophys J 66:2107-2110.
Varshavsky, A. 2011. The N-end rule pathway and regulation by proteolysis. Protein Sci 20:1298-1345.
Vogel, M., M. P. Mayer, and B. Bukau. 2006. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J Biol Chem 281:38705-38711.
Volker, C., and A. N. Lupas. 2002. Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1-22.
Walsh, P., D. Bursac, Y. C. Law, D. Cyr, and T. Lithgow. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567-571.
Wang, A. M., Y. Miyata, S. Klinedinst, H. M. Peng, J. P. Chua, T. Komiyama, X. Li, Y. Morishima, D. E. Merry, W. B. Pratt, Y. Osawa, C. A. Collins, J. E. Gestwicki, and A. P. Lieberman. 2013. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112-118.
Ward, W. W., and S. H. Bokman. 1982. Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21:4535-4540.
Wilbanks, S. M., and D. B. McKay. 1995. How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270:2251-2257.
Wu, B., A. Wawrzynow, M. Zylicz, and C. Georgopoulos. 1996. Structure-function analysis of the Escherichia coli GrpE heat shock protein. EMBO J 15:4806-4816.
Wu, Y., J. Li, Z. Jin, Z. Fu, and B. Sha. 2005. The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J Mol Biol 346:1005-1011.
Xu, Z., A. L. Horwich, and P. B. Sigler. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741-750.
Yamasaki, T., Y. Nakazaki, M. Yoshida, and Y. H. Watanabe. 2011. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. FEBS J 278:2395-2403.
Yebenes, H., P. Mesa, I. G. Munoz, G. Montoya, and J. M. Valpuesta. 2011. Chaperonins: two rings for folding. Trends Biochem Sci 36:424-432.
Zhang, H., L. Lin, C. Zeng, P. Shen, and Y. P. Huang. 2007. Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS Microbiol Lett 275:168-174.
Zmijewski, M. A., A. J. Macario, and B. Lipinska. 2004. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. J Mol Biol 336:539-549.
Zolkiewski, M. 2006. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol Microbiol 61:1094-1100.
Zwickl, P., D. Ng, K. M. Woo, H. P. Klenk, and A. L. Goldberg. 1999. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274:26008-26014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊