跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱永益
研究生(外文):Yung-Yi Chiu
論文名稱:應用蟻群最佳化於資料相關結合
論文名稱(外文):Applying Ant Colony Optimization to Data Association
指導教授:鍾翼能鍾翼能引用關係胡永柟胡永柟引用關係
指導教授(外文):Yi-Nung ChungYung-Nan Hu
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:56
中文關鍵詞:資料相關結合技術蟻群最佳化
外文關鍵詞:Data associationAnt Colony Optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
追蹤目標物在雷達系統中,是一項極為重要的工作。藉由追蹤技術,可以瞭解目標的位置、動態等資訊,將偵測模組求得之訊號,分析出完整的目標物,並求得於連續的動態中彼此對應的關係,以達到追蹤的目的。其中又以資料相關結合技術、變速度之偵測與修正系統參數的數學運算為決定追蹤效果與精確度之最主要的關鍵。
本文中,嘗試利用蟻群最佳化(Ant Colony Optimization)結合資料結合技術,配合卡門濾波器當作其適應性變速度的補償,來建立一套系統化的目標追蹤模式。經由這個方式,有效地改進其系統的準確度。
Targets tracking is an extremely important task in the radar system. By tracking technique, we can know the information such as the location and the dynamic of targets. To get the complete targets by analyzing the signal that obtained by detection module, and seek the corresponding relationship between them in a continuous dynamic in order to achieve the purpose of tracking. The key developments of this subject are data association techniques and maneuvering targets’ estimation algorithm.
In this thesis, a systematic tracking mode is developed by using an adaptive filter consisting of a data association technique denoted Ant Colony Optimization together with Kalman filters as an adaptive maneuvering compensator. With this approach, the accuracy of tracking performance can be effectively improved.
目錄

封面內頁
簽名頁
授權書........................ iii
中文摘要....................... iv
英文摘要....................... v
誌謝......................... vi
目錄......................... vii
圖目錄........................ ix
表目錄........................ x

第一章 緒論
1.1 研究動機..................... 1
1.2 研究方法..................... 2
1.3 論文結構..................... 3
第二章 卡門濾波器
2.1 簡介....................... 4
2.2 動態方程式.................... 5
2.3 數學推導..................... 7
2.4 擴展型卡門濾波器................. 10
2.5 相關性質..................... 13
第三章 蟻群最佳化
3.1 簡介....................... 16
3.2 演算法架構.................... 16
3.3 運算方式..................... 19
第四章 資料相關結合技術
4.1 簡介....................... 21
4.2 Gating 理論................... 21
4.3 One-Step Conditional Maximum Likelihood .. 24
4.4 蟻群最佳化.................... 25
第五章 變速度追蹤與適應性程序
5.1 簡介....................... 31
5.2 多目標追蹤系統之動態方程式............ 31
5.3 變速度追蹤與適應性程序.............. 33
第六章 模擬分析
6.1 簡介....................... 38
6.2 單目標之變速度追蹤模擬分析............ 40
6.3 雙目標之變速度追蹤模擬分析............ 43
6.4 四目標之變速度追蹤模擬分析............ 46
第七章 結論..................... 52
參考文獻....................... 53


圖目錄

圖2.1 卡門濾波器系統方塊圖.............. 4
圖2.2 卡門濾波器之詳細整體流程圖........... 9
圖2.3 卡門濾波器之一步預估狀態流程圖......... 15
圖3.1 蟻群覓食路徑示意圖............... 17
圖3.2 蟻群最佳化求解問題之流程圖........... 19
圖4.1 Gating 示意圖................. 23
圖4.2 目標物與量測值之示意圖............. 28
圖4.3 應用蟻群最佳化求解最佳量測值之流程圖...... 30
圖5.1 適應性卡門濾波器之工作流程圖.......... 37
圖6.1 方法一之單目標追蹤軌跡圖............ 41
圖6.2 方法二之單目標追蹤軌跡圖............ 41
圖6.3 方法一與方法二之單目標誤差比較圖........ 42
圖6.4 方法一之雙目標追蹤軌跡圖............ 44
圖6.5 方法二之雙目標追蹤軌跡圖............ 44
圖6.6 方法一與方法二之雙目標位置誤差比較圖...... 44
圖6.7 方法一與方法二之雙目標速度誤差比較圖...... 45
圖6.8 方法一之四目標追蹤軌跡圖............ 48
圖6.9 方法二之四目標追蹤軌跡圖... ... ..... 48
圖6.10方法一與方法二之四目標位置誤差比較圖...... 49
圖6.11方法一與方法二之四目標速度誤差比較圖...... 50


表目錄

表6.1 單目標追蹤之初始值............... 40
表6.2 單目標之變速度區間設定............. 40
表6.3 方法一與方法二之單目標誤差結果比較....... 42
表6.4 雙目標追蹤之初始值............... 43
表6.5 雙目標之變速度區間設定............. 43
表6.6 方法一與方法二之雙目標誤差結果比較....... 46
表6.7 四目標追蹤之初始值............... 46
表6.8 四目標之變速度區間設定............. 47
表6.9 方法一與方法二之四目標誤差結果比較....... 51
[1] P.C. Chen, G Kendall, G.V. Berghe,“An Ant Based Hyper-heuristic for the Travelling Tournament Problem,” Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling (CI-Sched 2007), pp.19-26, 2007.
[2] Konak, A. & Kulturel-Konak, S., “An Ant Colony Optimization Approach to the Minimum Tool Switching Instant Problem in Flexible Manufacturing System,” Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling (CI-Sched 2007), pp.43-48, 2007.
[3] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol.1, pp.53-66, 1997.
[4] Montemanni, R., Smith, D.H. & Gambardella, L.M., “Ant Colony Systems for Large Sequential Ordering Problems,” Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp.60-67, 2007.
[5] Complex Intelligent Syst. Lab., Swinburne Univ. of Technol. & Melbourne, Vic.,“Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem,” Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 2007), pp.333-340, 2007.
[6] Kanan, H.R., Faez, K., & Hosseinzadeh, M., “Face Recognition System Using Ant Colony Optimization-Based Selected Features,” Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA 2007), pp.57-62, 2007.
[7] Duan, H. & Xiufen Yu,“Hybrid Ant Colony Optimization Using Memetic Algorithm for Traveling Salesman Problem,” Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2007), pp.92-95, 2007.
[8] Haibin Duan, Xiufen Yu & Guanjun Ma,“Novel Hybrid Approach for Fault Diagnosis in 3-DOF Flight Simulator Based on BP Neural Network and Ant Colony Algorithm,” Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp.371-374, 2007.
[9] H.Lee & I-J Tahk, ”Generalized Input-Estimation Technique for Tracking Maneuvering Targets, ” IEEE Trans. Aerosp. Electron. Syst. Vol AES-35, pp.1388-1403, 1999.
[10] K. A. Fisher & P. S. Maybeck, ” Multiple Adaptive Estimation with Filter Spawning,” IEEE Trans. Aerosp. Electron. Syst.Vol.38, No.3, pp.755-768, 2002.
[11] N.Okello & B.Ristic, ”Maximum Likelihood Registration for Multiple Dissimilar Sensors,” IEEE Trans. Aerosp. Electron.Syst. Vol.39, No.3, pp.1074-1083,2003.
[12] P.D.Hanlon & P.S. Maybeck, ”Interrelation Ship of Single-Filter and Multiple-Model Adaptive Algorithms,” IEEE Trans. Aerosp. Electron. Syst. Vol. AES-34, pp.934-946, 1998.
[13] E.Mazor,J Dayan,A.Averbuch & Y.Bar-Shalom, ”Interacting Multiple Model Methods in Target Tracking: A Survey,” IEEE Trans. Aerosp. Electron. Syst. Vol AES-34, pp.103-124, 1998.
[14] D. Sengupta & R. A. Iltis, "Neural solution to the multitarget tracking data association problem," IEEE Trans. Aerosp. Electron. Syst., Vol.25, pp.86-108, 1989.
[15] B. Zhou & N.K. Bose, "A comprehensive analysis of neural solution to the multitarget tracking data association problem," IEEE Trans. Aerosp. Electron. Syst.,Vol.29, pp.260-263, 1993.
[16] L. Chin, "Application of neural networks in target tracking data fusion," IEEE Trans. Aerosp. Electron. Syst., Vol.30, pp.281-287, 1994.
[17] K.C. Chang, C.Y. Chong, & Y. Bar-Shalom, "Joint Probabilistic Data and Association Distributed Sensor Networks," IEEE Trans. Automa. Contr., Vol. AC-31, pp.889-897, Oct .1986.
[18] Pau-Choo Chung, Ching-Tsorng Tsai, E-Ling Chen & Yung-Nien Sun “Polygonal Approximation Using A Competitive Hopfield Neural Network, “ Patten Recognition, Vol.27, No.11, pp.1505-1215, 1994.
[19] Y. Bar-Shalom & T.E. Fortmann, ” Tracking and Data Association,” Academic Press, INC. 1989.
[20] S. Blackman, ”Multiple Target Tracking With Radar Applications, ” Artech House, 1986.
[21] Lin, X., Kirybarajan, T., & Bar-Shalom, Y., “Multi-sensor bias estimation with local tracks without a priori association,” Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, vol. 5204, San Diego, CA, Aug. 2003.
[22] Stone, L. D., Williams, M., & Tran, T., “Track-to-track association and bias removal,”Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, vol. 4728, Orlando, FL, Apr. 2002.
[23] Agate, C, and Sullivan, K. J. Road-constraint target tracking and identification using a particle filter. In Proceedings of Signal and Data Processing of Small Targets, vol. 5204,SPIE, 2003.
[24] Lin, L., Kirubarajan, T., & Bar-Shalom, Y., “New assignment-based data association for tracking move-stop-move targets, ” Proceedings of International Conference on Information Fusion. Annapolis, MD, July 2002, pp.943-950.
[25] Ristic, B., Arulampalam, S., & Gordon, N. Beyond the Kalman Filter, Particle Filters for Tracking Applications. Norwood, MA: Artech House Publishers, 2004.
[26] Zhang, X., Willett, P. and Bar-Shalom, Y. The Cram´er-Rao Bound for Dynamic Target Tracking with Measurement Origin Uncertainty. In The 41st IEEE Conference on Decision and Control, 2002.
[27] Hue, C., Le Cadre, J.-P., and P´erez, P. Performance Analysis of Two Sequential Monte Carlo Methods and Posterior Cram´er-Rao Bounds for Multi-Target Tracking. Technical report, IRISA, 2002.
[28] Lin, X., Kirubarajan, T., & Bar-Shalom, Y., “Multi-sensor-multi-target bias estimation for asynchronous sensors,” Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition XIII, vol. 5429, Orlando, FL, Apr. 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top