跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韻安
研究生(外文):Yun-An Chen
論文名稱:腎臟有機陰離子運輸蛋白担體I於家兔體內藥物交互作用之藥物動力學研究
論文名稱(外文):Pharmacokinetic Studies ofDrug-Drug Interactions by Renal Organic Anion Transporter Iin Rabbits
指導教授:許光陽許光陽引用關係
指導教授(外文):Kuang-Yang Hsu
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:168
中文關鍵詞:有機陰離子運輸蛋白ü85體I對胺馬尿酸異丁苯乙酸引朵美洒辛
外文關鍵詞:organic anion transporter Ip-aminohippuric acidindomethacinibuprofen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
運輸蛋白(transporter)是一種在細胞膜上掌控物質進出的蛋白質,近年來許多臨床上發生的藥物交互作用被認為可能與其有關。本實驗的目的為以單劑量與多劑量兩種不同的合併給藥方式來探討兔子腎臟上有機陰離子運輸蛋白ü85;體I(Organic anion transporter I, OATI)進行交互作用時的藥物動力學變化
本實驗藥物p-Aminohippuric acid (PAH)、Ibuprofen (IBU)及Indomethacin (INDO)在血漿中濃度的分析方法皆採用逆向高效液相層析法,其血中濃度檢量線在本實驗濃度範圍內具有良好的線性關係以及準確性與精確性。
口服同莫耳單一劑量的IBU(21.38mg/kg)或INDO(37.08mg/kg)至家兔體內,並同時靜脈注射等莫耳數之PAH(20mg/kg),可得單劑量給藥後結果。實驗顯示:(1) INDO血中濃度曲線下面積(AUC)及最高血中濃度(Cmax)相較於對照組有8.42至11.33倍顯著差異(p<0.01);清除率(clearance,CL)有6.94倍的顯著下降(p<0.01)。(2) PAH之AUC及CL有稍微上升及下降。(3) IBU的AUC稍微上升且CL下降了3.56倍(p<0.01)。(4) PAH在與IBU單劑量合併使用時,AUC些微上升。
多劑量IBU或INDO口服給藥後發現:(1) INDO的AUC及Cmax有15.02至20.93倍之顯著上升(p<0.01);CL下降了19.66倍(p<0.01)。(2) PAH與INDO合併給藥時,其AUC有2.07倍的顯著上升(p<0.01);CL有1.94倍的顯著下降(p<0.01)。(3) IBU的AUC上升且CL下降了5.53倍(p<0.01)。(4) PAH在與IBU多劑量合併使用時,AUC及CL都有上升及下降。INDO經由腎排除的比例有60%,IBU則約45%~75%,但因IBU在腎小管的主動分泌比例只有約1%,而INDO則將近34.4%,故在評估OATI對於IBU與INDO的影響時須考慮此因素。由實驗結果可知,OATI上發生藥物交互作用時會改變藥物彼此間的排除。
Carrier-mediated processes, often referred to as transporters which located on the membrane, play key roles in the reabsorption and secretion of many endogenous and xenobiotic compounds by the kidney. In recent years, the specific roles of such transporters in drug disposition and drug-drug interactions become more important. The purpose of this study is to estimate the interaction of drugs with the organic anion transporter I (OATI) in the kidney.
An accuracy, precision, simple and specific HPLC method was developed to detect the concentration of p-aminohippuric acid (PAH), ibuprofen (IBU) and indomethacin (INDO) in plasma.
The drug-drug interaction evaluating of OATI was determined by combining dosing with same molar dose of I.V. of PAH (20mg/kg) and P.O. administration of single or multiple dose of IBU (21.38mg/kg) and INDO (37.08mg/kg) to rabbits. During single dose of INDO or IBU administration, the results were shown below: (1) INDO: significantly increased the AUC and Cmax by 8.42 to 11.33 fold (p<0.01) and decreased the CL by 6.94 fold (p<0.01). (2) PAH: slightly increased the AUC and slightly decreased the CL. (3) IBU: slightly increased the AUC and Cmax but significantly decreased the CL by 3.56 fold (p<0.01). (4) PAH: combination dosing with IBU slightly increased the AUC.
In multiple dose studies, the results were shown below: (1) INDO: significantly increased the AUC and Cmax by 15.02 to 20.93 fold (p<0.01) and decreased the CL by 19.66 fold (p<0.01). (2) PAH: significantly increased the AUC by 2.07 fold (p<0.01) and decreased the CL by 1.94 fold (p<0.01). (3) IBU: slightly increased the AUC and Cmax but significantly decreased the CL by 5.53 fold (p<0.01). (4) PAH: slightly increased the AUC and slightly decreased the CL. The excretion of IBU in kidney (45%-75%) is equal with INDO (60%), but the tubular excretion of IBU was only 1% compared with 34.4% of INDO.This may result the difference of OATI effect.
In comparison between single and multiple dose administration, the results showed the higher competition level in drug-drug interaction when INDO or IBU multiple administration. The OATI effect the elimination of IBU and INDO.
目次

中文摘要…………………………………………………………………I
Abstract…………………………………………………………………II
目次………………………………………………………………………III
表目錄…………………………………………………………………VIII
圖目錄……………………………………………………………………XII
縮寫表……………………………………………………………………XIV
第一章緒論
壹、 前言……………………………………………………………1
貳、 研究背景………………………………………………………3
一、 腎臟於藥物排除之角色………………………………………3
1. 腎臟之基本功能…………………………………………………3
2. 腎絲球過濾………………………………………………………8
3. 腎小管主動分泌…………………………………………………9
4. 腎小管再吸收…………………………………………………110
二、 離子運輸蛋白於腎臟排除上的角色………………………111
1. 腎臟上運輸蛋白基本性質與功能……………………………111
2. 腎臟上有機陰離子運輸蛋白的分類…………………………116
3. 腎臟上有機陰離子運輸蛋白在腎臟上的分布………………112
4. 腎小管上的有機陰離子運輸蛋白担體I…………………… 24
5. 經由腎臟上有機陰離子運輸蛋白担體I排除之物質……… 28
6. 腎臟上有機陰離子運輸蛋白担體I與非類固醇類止痛藥…30
7. 離子運輸蛋白在臨床上的影響………………………………34
8. OATI與紐西蘭大白兔的研究關連……………………………35
三、 腎臟功能之測量……………………………………………36
1. 利用p-aminohippuric acid評估腎小管分泌與有機陰離子
運輸蛋白I的運輸能力…………………………………… 36
2. p-Aminohippuric acid之基本物化性質…………………36
3. p-Aminohippuric acid之分析方法…………………………37

四、 腎小管上有機陰離子運輸蛋白担體I的受質………………38
1. 經由有機陰離子運輸蛋白担體I運輸之物質……………… 38
2. Ibuprofen之基本物化性質……………………………………38
3. Ibuprofen之藥物動力學特性…………………………………39
4. Indomethacin之基本物化性質………………………………40
5. Indomethacin之藥物動力學特性……………………………41
五、 研究動機與目的……………………………………………42

第二章 實驗材料與方法……………………………………43
壹、 實驗儀器與材料………………………………………43
一、 實驗試藥品……………………………………………43
二、 實驗儀器………………………………………………44
三、 實驗試藥之配置………………………………………45
1. p-Aminohippuric acid儲備液之製備…………………45
2. Ibuprofen儲備液之製備………………………………45
3. Indomethacin儲備液之製備……………………………45
4. p-Aminobenzoic acid儲備液之製備……………………46
5. Mefenamic acid儲備液之製備…………………………46
貳、 分析條件……………………………………………………47
一、 p-Aminohippuric acid分析方法…………………………47
1. p-Aminohippuric acid 之HPLC分析條件………………47
2. p-Aminohippuric acid血漿檢品之處理…………………48
3. p-Aminohippuric acid檢品標準檢量線配置方法………49
二、 Ibuprofen分析方法…………………………………………50
1. Ibuprofen之HPLC分析條件……………………………50
2. Ibuprofen血漿檢品之處理………………………………51
3. Ibuprofen檢品標準檢量線配置方法……………………52
三、 Indomethacin分析方法……………………………………53
1. Indomethacin之HPLC分析條件………………………53
2. Indomethacin血漿檢品之處理…………………………54
3. Indomethacin檢品標準檢量線配置方法………………55
參、 分析方法之確效實驗……………………………………56
一、 p-Aminohippuric acid分析方法之確效實驗…………56
1. 專一性試驗………………………………………………56
2. 同次(Within-run)分析之精確性(precision)與準確性
(accuracy)………………………………………………56
3. 異次(Between-run)分析之精確性(precision)與準確性
(accuracy)………………………………………………56
二、 Ibuprofen分析方法之確效實驗………………………58
1. 專一性試驗………………………………………………58
2. 同次(Within-run)分析之精確性(precision)與準確性
(accuracy) ……………………………………………58
3. 異次(Between-run)分析之精確性(precision)與準確性
(accuracy) ……………………………………………58
三、 Indomethacin分析方法之確效實驗…………………59
1. 專一性試驗………………………………………………59
2. 同次(Within-run)分析之精確性(precision)與準確性
(accuracy) ………………………………………………59
3. 異次(Between-run)分析之精確性(precision)與準確性
(accuracy) ………………………………………………59
肆、 動物實驗方法…………………………………………60
一、 實驗動物之準備工作……………………………………60
二、 篩選家兔腎臟有機陰離子運輸蛋白I substrates的方
法…………………………………………………………61
三、 靜脈注射p-aminohippuric acid之實驗………………62
1. 單一劑量測定p-aminohippuric acid於家兔體內之
藥物動力學實驗……………………………………………62
四、 口服投與ibuprofen與indomethacin之實驗……………63
1. 單一劑量測定ibuprofen與indomethacin於家兔體內之
藥物動力學實驗……………………………………………63
五、 合併靜脈注射與口服投與之實驗方法……………………65
1. 單一劑量靜脈注射p-aminohippuric acid合併單一劑量
口服投與ibuprofen與indomethacin之藥物動力學研究
-- 測定同時給予單劑量ibuprofen與p-aminohippuric
acid於家兔體內之藥物動力學…………………………65
-- 測定同時給予單劑量indomethacin與
p-aminohippuric acid於家兔體內之藥物動力學……65
2. 單一劑量靜脈注射p-aminohippuric acid合併多劑量
口服ibuprofen與indomethacin之藥物動力學研究
-- 測定同時給予多劑量ibuprofen與p-aminohippuric
acid於家兔體內之藥物動力學………………………68
-- 測定同時給予多劑量indomethacin與
p-aminohippuric acid於家兔體內之藥物動力學……70
六、 動物實驗之藥物動力學數據處理與分析……………71
1. 靜脈注射p-aminohippuric acid之數據處理………71
2. 口服投與ibuprofen以及indomethacin之數據處理……71
3. 合併靜脈注射p-aminohippuric acid與口服投與
ibuprofen、indomethacin之數據處理…………………72
七、 統計方法………………………………………………73

第三章 實驗結果與討論………………………………………75
壹、 分析方法之結果與討論分析…………………………75
一、 p-Aminohippuric acid分析結果與討論……………75
1. 檢品分析結果……………………………………………75
2. 標準檢量線………………………………………………75
3. 同次及異次之確效試驗…………………………………75
4. 分析方法討論………………………………………………76
二、 Ibuprofen與indomethacin分析結果與討論……………81
1. 檢品分析結果………………………………………………81
2. 標準檢量線…………………………………………………81
3. 同次及異次之確效試驗……………………………………81
4. 分析方法討論………………………………………………82
貳、 動物實驗結果與討論……………………………………93
一、 靜脈注射p-aminohippuric acid結果與討論…………93
二、 口服實驗結果與討論……………………………………96
三、 合併靜脈注射與口服投與之結果與討論………………102
1. 單一劑量靜脈注射p-aminohippuric acid合併單一劑量口服
投與ibuprofen……………………………………………102
2. 單一劑量靜脈注射p-aminohippuric acid合併單一劑量口服
投與indomethacin……………………………………………108
3. 單一劑量靜脈注射p-aminohippuric acid合併多劑量口服投
與 ibuprofen………………………………………………114
4. 單一劑量靜脈注射p-aminohippuric acid合併多劑量口服投
與indomethacin………………………………………………124
5. 比較單劑量與多劑量間ibuprofen與indomethacin彼此的
藥物動力學變化………………………………………………136
6. 比較OATI於體內實驗與體外實驗時對ibuprofen與
indomethacin的藥物動力學變化……………………………146
7. OATI對ibuprofen代謝物的影響……………………………147
8. OATI之研究與動物模式的關連………………………………149

第四章 結論………………………………………………………150
參考文獻…………………………………………………………………152
參考文獻

1.衛生署藥物食品安全週報
http://www.doh.gov.tw/cht2006/index_populace.aspx

2.中央健康保險局
http://www.nhi.gov.tw/

3.Tett, S.E., C.M. Kirkpatrick, A.S. Gross, and A.J. McLachlan,
Principles and clinical application of assessing alterations in renal
elimination pathways. Clinical pharmacokinetics journal, 2003. 42: p. 1193-1211.

4.Françoise ROCH-RAMEL nd Marc E. DE BROE, Renal handling
of drugs and xenobiotics. Clinical Nephrotoxins, Second Edition,
Renal Injury from Drugs and Chemicals, 2004.
10.1007/1-4020-2586-6_2: p. 21-46.

5.Peter L. Bonate, Kelly Reith , Drug interactions at the renal level.
Implications for drug development. Clinical pharmacokinetics journal, 1998. 34: p.375-404.

6.Lee, W. and R.B. Kim, Transporters and renal drug elimination.
Annual Review of Pharmacology and Toxicology, 2004. 44: p.137-166.

7.UCLA Health System. Alphabetical List / Kidney Cancer. Sat May02,2009. http://urology.ucla.edu/body.cfm?id=136

8.BIOS 100 Lecture Material Online AM Lecture, Fall 2004, Exam 4
Material, Lecture 21, The Excretory System.


9.Perri, D. Ito, S. Rowsell, V. and Shear, N. H., The kidney--the body''s
playground for drugs: an overview of renal drug handling with
selected clinical correlates. The Canadian Journal of Clinical Pharmacology, 2003. 10: p.17-23.

10.Daniel S. Streetman PharmD, Jeffrey F. Bleakley MD, Jooran.S. Kim PharmD, Anne N. Nafziger MD, MHS, J. Steven Leeder PharmD, PhD, Andrea Gaedigk PhD, Russell Gotschall MS, Gregory L. Kearns PharmD and Joseph S. Bertino Jr PharmD. Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the "Cooperstown cocktail". Clinical Pharmacology & Therapeutics, 2000. 68: p. 375–383.

11.Andrew J. McLachlan, Annette S. Gross, Joanne L. Beal, Ian Minns, and Susan E. Tett. Analytical validation for a series of marker compounds used to assess renal drug elimination processes. Therapeutic Drug Monitoring, 2001. 23: p. 39–46.

12.Shitara, Y., H. Sato, and Y. Sugiyama, Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs.
Annual Review of Pharmacology and Toxicology, 2005. 45: p. 689-723.

13.The McGraw-Hill online learing, 2006.

14.Spruill, W.J., W.E. Wade, and H.H. Cobb, 3rd, Comparison of estimated glomerular filtration rate with estimated creatinine clearance in the dosing of drugs requiring adjustments in elderly patients with declining renal function. The American Journal of Geriatric Pharmacotherapy, 2008. 6: p. 153-60.

15.Thomas, L. and A.R. Huber, Renal function--estimation of glomerular filtration rate. Clinical Chemistry and Laboratory Medicine, 2006. 44: p. 1295-1302.
16.Inui, K.I., S. Masuda, and H. Saito, Cellular and molecular aspects of drug transport in the kidney. Kidney International, 2000. 58: p. 944-958.

17.Lee, W. and R.B. Kim, Transporters and renal drug elimination.
Annual Review of Pharmacology and Toxicology, 2004. 44: p. 137-166.

18.Mizuno, N., T. Niwa, Y. Yotsumoto, and Y. Sugiyama, Impact of drug transporter studies on drug discovery and development. Pharmacoligical Reviews, 2003. 55: p. 425-461.

19.Berkhin, E.B. and M.H. Humphreys, Regulation of renal tubular secretion of organic compounds. Kidney International, 2001. 59: p. 17-30.

20.Sai, Y. and A. Tsuji, Transporter-mediated drug delivery: recent progress and experimental approaches. Drug Discovory Today, 2004. 9: p. 712-720.

21.Masereeuw, R. and F.G. Russel, Mechanisms and clinical implications of renal drug excretion. Drug Metabolism Reviews, 2001. 33: p. 299-351.

22.Dresser, M.J., M.K. Leabman, and K.M. Giacomini, Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. Journal of Pharmaceutical Sciences, 2001. 90: p. 397-421.

23.Pritchard, J.B. and D.S. Miller, Mechanisms mediating renal secretion of organic anions and cations. Physiological Reviews, 1993. 73: p. 765-96.

24.Sweet, D.H., N.A. Wolff, and J.B. Pritchard, Expression cloning and characterization of ROATI. The basolateral organic anion transporter in rat kidney. Journal of Biological Chemistry, 1997. 272: p. 30088-95.


25.Sekine, T., S.H. Cha, and H. Endou, The multispecific organic anion transporter (OAT) family. Pflügers Archiv European Journal of Physiology, 2000. 440: p. 337-50.

26.Robertson, E.E. and G.O. R ankin, Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacology & Therapeutics, 2006. 109: p. 399-412.

27.Tojo, A., T. Sekine, N. Nakajima, M. Hosoyamada, Y. Kanai, K. Kimura, and H. Endou, Immunohistochemical localization of multispecific renal organic anion transporter I in rat kidney. J Am Soc Nephrol, 1999. 10: p. 464-471.

28.Kojima, R., T. Sekine, M. Kawachi, S.H. Cha, Y. Suzuki, and H. Endou, Immunolocalization of multispecific organic anion transporters, OATI, OAT2, and OAT3, in rat kidney. Journal of the American Society of Nephrology, 2002. 13: p. 848-857.

29.Hosoyamada, M., T. Sekine, Y. Kanai, and H. Endou, Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Amermican Journal of Physiology, 1999. 276: p. F122-128.

30.Cha, S.H., T. Sekine, J.I. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou, Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Molecular Pharmacology, 2001. 59: p. 1277-1286.

31.Hasegawa, M., H. Kusuhara, D. Sugiyama, K. Ito, S. Ueda, H. Endou, and Y. Sugiyama, Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. Journal of Prarmacology and Experimental Therapeutics, 2002. 300: p. 746-753.
32.Motohashi, H., Y. Sakurai, H. Saito, S. Masuda, Y. Urakami, M. Goto, A. Fukatsu, O. Ogawa, and K. Inui, Gene expression levels and immunolocalization of organic ion transporters in the human kidney. Journal of the American Society of Nephrology, 2002. 13: p. 866-874.

33.Enomoto, A., M. Takeda, M. Shimoda, S. Narikawa, Y. Kobayashi, T. Yamamoto, T. Sekine, S.H. Cha, T. Niwa, and H. Endou, The Journal of pharmacology and experimental therapeutics, Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors, 2002. 301: p. 797-802.

34.Sekine, T., S.H. Cha, M. Tsuda, N. Apiwattanakul, N. Nakajima, Y. Kanai, and H. Endou, Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Letters, 1998. 429: p. 179-182.

35.Babu, E., M. Takeda, S. Narikawa, Y. Kobayashi, A. Enomoto, A. Tojo, S.H. Cha, T. Sekine, D. Sakthisekaran, and H. Endou, Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochimica and Biophysica Acta, 2002. 1590: p. 64-75.

36.Sekine, T., H. Miyazaki, and H. Endou, Molecular physiology of renal organic anion transporters. American Journal of Physiology, 2006. 290: p. 251-261.

37.Berner, W. and R. Kinne, Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflügers Archiv European Journal of Physiology, 1976. 361: p. 269-277.

38.Kinsella, J.L., P.D. Holohan, N.I. Pessah, and C.R. Ross, Isolation of luminal and antiluminal membranes from dog kidney cortex. Biochimica and Biophysica Acta, 1979. 552: p. 468-477.


39.Miyazaki, H., T. Sekine, and H. Endou, The multispecific organic anion transporter family: properties and pharmacological significance. Trends in Pharmacological Sciences, 2004. 25: p. 654-662.

40.Sekine, T., N. Watanabe, M. Hosoyamada, Y. Kanai, and H. Endou, Expression cloning and characterization of a novel multispecific organic anion transporter. Journal of Biological Chemistry, 1997. 272: p. 18526-18529.

41.Uwai, Y., M. Okuda, K. Takami, Y. Hashimoto, and K. Inui, Functional characterization of the rat multispecific organic anion transporter OATI mediating basolateral uptake of anionic drugs in the kidney. FEBS Letters, 1998. 438: p. 321-324.

42.Apiwattanakul, N., T. Sekine, A. Chairoungdua, Y. Kanai, N. Nakajima, S. Sophasan, and H. Endou, Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Molecular Pharmacology, 1999. 55: p. 847-854.

43.Cihlar, T., D.C. Lin, J.B. Pritchard, M.D. Fuller, D.B. Mendel, and D.H. Sweet, The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter I. Molecular Pharmacology, 1999. 56: p. 570-580.

44.Cha, S.H., T. Sekine, J.I. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou, Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Molecular Pharmacology, 2001. 59: p. 1277-1286.

45.Sperber, I., Secretion of organic anions in the formation of urine and bile. Pharmacological Reviews, 1959. 11: p. 109-134.


46.Ullrich, K.J. and G. Rumrich, Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. American Journal of Physiology, 1988. 254: p. 453-462.

47.Weiner, I.M. and G.H. Mudge, Renal Tubular Mechanisms for Excretion of Organic Acids and Bases. The American Journal of Medicine, 1964. 36: p. 743-762.

48.Kusuhara, H., T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S.H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou, Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. Journal of Biological Chemistry, 1999. 274: p. 13675-13680.

49.Van Aubel, R.A., R. Masereeuw, and F.G. Russel, Molecular pharmacology of renal organic anion transporters. American Journal of Physiology Renal Physiology, 2000. 279: p. F216-232.

50.Zhang, X., C.E. Groves, A. Bahn, W.M. Barendt, M.D. Prado, M. Rodiger, V. Chatsudthipong, G. Burckhardt, and S.H. Wright, Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. American Journal of Physiology Renal Physiology,2004. 287: p. F999-1010.

51.Philip B. Woodhall, C. Craig Tisher, Charles A. Simonton and Roscoe R. Robinson. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. The Journal of Clinical Investigation, 1978. 61: p. 1320-1329.

52.Ullrich, K.J., Renal transporters for organic anions and organic cations. Structural requirements for substrates. The Journal of Membrane Biology, 1997. 158: p. 95-107.



53.Cox, P.G., C.H. van Os, and F.G. Russel, Accumulation of salicylic acid and indomethacin in isolated proximal tubular cells of the rat kidney. Pharmacological Research, 1993. 27: p. 241-252.

54.De Zeeuw, D., H.R. Jacobson, and D.C. Brater, Indomethacin secretion in the isolated perfused proximal straight rabbit tubule. Evidence for two parallel transport mechanisms. The Journal of Clinical Investigation, 1988. 81: p. 1585-1592.

55.Nierenberg, D.W., Drug inhibition of penicillin tubular secretion: concordance between in vitro and clinical findings. The Journal of pharmacology and experimental therapeutics, 1987. 240: p. 712-716.

56.Melendez, E. and J.L. Reyes, Renal handling of indomethacin and its relationship with the secretory pathway of prostaglandins. Journal of Pharmacy and Pharmacology, 1982. 34: p. 648-652.

57.Tanigawara, Y., N. Okamura, M. Hirai, M. Yasuhara, K. Ueda, N. Kioka, T. Komano, and R. Hori, Transport of digoxin by human p-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PKI). The Journal of pharmacology and experimental therapeutics,1992. 263: p. 840-845.

58.Hammerman, C., I. Shchors, S. Jacobson, M.S. Schimmel, R. Bromiker, M. Kaplan, and A. Nir, Ibuprofen versus continuous indomethacin in premature neonates with patent ductus arteriosus: is the difference in the mode of administration? Pediatric Research, 2008. 64: p. 291-297.

59.Kovarik, J.M., H.S. Purba, M. Pongowski, C. Gerbeau, H. Humbert, and E.A. Mueller, Pharmacokinetics of dexamethasone and valspodar, a P-glycoprotein (mdrI) modulator: implications for coaministration. Pharmacotherapy, 1998. 18: p. 1230-1236.


60.Khamdang, S., M. Takeda, R. Noshiro, S. Narikawa, A. Enomoto, N. Anzai, P. Piyachaturawat, and H. Endou, Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. The Journal of pharmacology and experimental therapeutics, 2002. 303: p. 534-539.

61.Hedman, A., B. Angelin, A. Arvidsson, R. Dahlqvist, and B. Nilsson, Interactions in the renal and biliary elimination of digoxin: stereoselective difference between quinine and quinidine. Clinical Pharmacology and Therapeutics, 1990. 47: p. 20-26.

62.Wakasugi, H., I. Yano, T. Ito, T. Hashida, T. Futami, R. Nohara, S. Sasayama, and K. Inui, Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clinical Pharmacology and Therapeutics,1998. 64: p. 123-128.

63.Kovarik, J.M., H.S. Purba, M. Pongowski, C. Gerbeau, H. Humbert, and E.A. Mueller, Pharmacokinetics of dexamethasone and valspodar, a P-glycoprotein (mdrI) modulator: implications for coadministration. Pharmacotherapy, 1998. 18: p. 1230-1236.

64.Uwai, Y., H. Saito, Y. Hashimoto, and K.I. Inui, Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOATI. The Journal of pharmacology and experimental therapeutics, 2000. 295: p. 261-265.

65.Tsuji, A., T. Terasaki, I. Tamai, and K. Takeda, In vivo evidence for carrier-mediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. The Journal of pharmacology and experimental therapeutics, 1990. 253: p. 315-320.




66.Hosoyamada, M., T. Sekine, Y. Kanai, and H. Endou, Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. American Journal of Physiology, 1999. 276: p. F122-128.

67.Thyss, A., G. Milano, J. Kubar, M. Namer, and M. Schneider, Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet, 1986. 1: p. 256-258.

68.Takeda, M., S. Khamdang, S. Narikawa, H. Kimura, M. Hosoyamada, S.H. Cha, T. Sekine, and H. Endou, Characterization of methotrexate transport and its drug interactions with human organic anion transporters. The Journal of pharmacology and experimental therapeutics, 2002. 302: p. 666-671.

69.Kremer, J.M. and R.A. Hamilton, The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. The Journal of Rheumatology, 1995. 22: p. 2072-2077.

70.USDA(United States Department of Agriculture),美國農業部http://www.hsus.org/animals_in_research/species_used_in_research/rabbit.html

71.Perst, V., M. Hassler, and J. Greven, Transport of anionic drugs across the basolateral membrane of proximal S2 segments of the rabbit kidney. Inverse relationship between the affinity to the p-aminohippurate transport system and the transport rate. Arzneimittelforschung, 2002. 52: p. 896-902




72.Zhang, X., C.E. Groves, A. Bahn, W.M. Barendt, M.D. Prado, M. Rodiger, V. Chatsudthipong, G. Burckhardt, and S.H. Wright, Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. American Journal of Physiology Renal Physiology, 2004. 287: p. F999-F1010.

73.Vanwert, A.L., R.M. Bailey, and D.H. Sweet, Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. American Journal of Physiology Renal Physiology, 2007. 293: p. F1332-1341.

74.Dantzler, W.H. and S.H. Wright, The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules. Biochimica and Biophysica Acta, 2003. 1618: p. 185-193.

75.Kos, T., P. Moser, N. Yilmatz, G. Mayer, R. Pacher, and S. Hallstrom, High-performance liquid chromatographic determination of p-aminohippuric acid and iothalamate in human serum and urine: comparison of two sample preparation methods. Journal of Chromatography B: Biomedical Sciences and Applications, 2000. 740: p. 81-85.

76.Smith, H.W., N. Finkelstein, L. Aliminosa, B. Crawford, and M. Graber, The Renal Clearances of Substituted Hippuric Acid Derivatives and Other Aromatic Acids in Dog and Man. The Journal of Clinical Investigation, 1945. 24: p. 388-404.

77.Meucci, V., A. Gasperini, G. Soldani, G. Guidi, and M. Giorgi, A new HPLC method to determine glomerular filtration rate and effective renal plasma flow in conscious dogs by single intravenous administration of iohexol and p-aminohippuric acid. Journal of Chromatographic Science, 2004. 42: p. 107-111.


78.Webb, D.E., R.M. Edwards, and J.J. Grantham, Dependence of proximal tubule p-aminohippurate secretion on serum proteins and metabolic substrates. American Journal Physiological, 1986. 251: p. F619-626.

79.Dantzler, W.H., K.K. Evans, and S.H. Wright, Kinetics of interactions of para-aminohippurate, probenecid, cysteine conjugates and N-acetyl cysteine conjugates with basolateral organic anion transporter in isolated rabbit proximal renal tubules. The Journal of pharmacology and experimental therapeutics, 1995. 272: p. 663-672.

80.Laroute, V., H.P. Lefebvre, G. Costes, and P.L. Toutain, Measurement of glomerular filtration rate and effective renal plasma flow in the conscious beagle dog by single intravenous bolus of iohexol and p-aminohippuric acid. Journal of Pharmacological and Toxicological Methods, 1999. 41: p. 17-25.

81.The Merck Index 14th edition: An Encyclopedia of Chemicals, Drugs, and Biologicals.Merck&Co.,Inc.2008.

82.Marsilio, R., R. Dall''Amico, G. Montini, L. Murer, M. Ros, G. Zacchello, and F. Zacchello, Rapid determination of p-aminohippuric acid in serum and urine by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1997. 704: p. 359-364.

83.International Ibuprofen Foundation, http://www.ibuprofen-foundation.com/what-ibuprofen/story.htm

84.http://commons.wikimedia.org/wiki/File:R-ibuprofen-A-2D-skeletal.png

85.Tan, S.C., B.K. Patel, S.H. Jackson, C.G. Swift, and A.J. Hutt, Stereoselectivity of ibuprofen metabolism and pharmacokinetics following the administration of the racemate to healthy volunteers. Xenobiotica, 2002. 32: p. 683-697.
86.Roder, J.D., C.L. Chen, H. Chen, and S. Sangiah, Bioavailability and pharmacokinetics of ibuprofen in the broiler chicken. Journal of veterinary pharmacology and therapeutics, 1996. 19: p. 200-204.

87.Smyth, J.M., P.S. Collier, M. Darwish, J.S. Millership, H.L. Halliday, S. Petersen, and J.C. McElnay, Intravenous indometacin in preterm infants with symptomatic patent ductus arteriosus. A population pharmacokinetic study. British Journal of Clinical Pharmacology, 2004. 58: p. 249-258.

88.Hart, F.D. and P.L. Boardman, Indomethacin: A New Non-Steroid Anti-Inflammatory Agent. British Medical Journal, 1963. 2: p. 965-970.

89.Integrative Medical Arts Group, Inc. • IBISmedical.com http://home.caregroup.org/clinical/altmed/interactions/Drugs/Indomethacin.htm

90.Kwan, K.C., G.O. Breault, E.R. Umbenhauer, F.G. McMahon, and D.E. Duggan, Kinetics of indomethacin absorption, elimination, and enterohepatic circulation in man. Journal of Pharmacokinetics and Biopharmaceutics, 1976. 4: p. 255-280.

91.Emori, H.W., G.D. Champion, R. Bluestone, and H.E. Paulus, Simultaneous pharmacokinetics of indomethacin in serum and synovial fluid. Annals of the rheumatic diseases, 1973. 32: p. 433-435.

92.Davies, N.M., Clinical pharmacokinetics of ibuprofen. The first 30 years. Clinical Pharmacokinetics, 1998. 34: p. 101-154.

93.Davies, E.F. and G.S. Avery, Ibuprofen: a review of its pharmacological properties and therapeutic efficacy in rheumatic disorders. Drugs, 1971. 2: p. 416-446.


94.Geisslinger, G., K. Dietzel, D. Loew, O. Schuster, G. Rau, G. Lachmann, and K. Brune, High-performance liquid chromatographic determination of ibuprofen, its metabolites and enantiomers in biological fluids. The Journal of Chromatography, 1989. 491: p. 139-149.

95.U.S. Department of Health and Human Services Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Center for Biologics Evaluation and Research (CBER). Guidance for Industry, Drug Interaction Studies —Study Design, Data Analysis, and Implications for Dosing and Labeling. September 2006 Clinical Pharmacology.

96.曾喬詩 (2007), 馬兜鈴酸腎病變於家兔體內對Inulin和p-Aminohippuric Acid藥物動力學研究. 台北醫學大學藥學系碩士論文.

97.Herraez-Hernandez, R., N.C. van de Merbel, and U.A. Brinkman, Determination of the total concentration of highly protein-bound drugs in plasma by on-line dialysis and column liquid chromatography: application to non-steroidal anti-inflammatory drugs. Journal of Chromatography B: Biomedical Sciences and Applications, 1995. 666: p. 127-137.

98.Kleinbloesem, C.H., et al., Pharmacokinetics and bioavailability of percutaneous ibuprofen. Arzneimittelforschung, 1995. 45: p. 1117-1121.

99.Canaparo, R., et al., Determination of Ibuprofen in human plasma by high-performance liquid chromatography: validation and application in pharmacokinetic study. Biomedical Chromatography, 2000. 14: p. 219-226.

100.Samara, E., et al., Pharmacokinetic analysis of diethylcarbonate prodrugs of ibuprofen and naproxen. Biopharmaceutics and Drug Disposition, 1995. 16: p. 201-210.
101.Tracqui, A., P. Kintz, and P. Mangin, Systematic toxicological analysis using HPLC/DAD. Journal of Forensic Sciences, 1995. 40: p. 254-262.

102.Ahn, H.Y., et al., Resolution of the enantiomers of ibuprofen; comparison study of diastereomeric method and chiral stationary phase method. Journal of Chromatography B: Biomedical Sciences and Applications, 1994. 653: p. 163-169.

103.al-Meshal, M.A., et al., The effect of colestipol and cholestyramine on ibuprofen bioavailability in man. Biopharmaceutics and Drug Disposition, 1994. 15: p. 463-471.

104.Castillo, M. and P.C. Smith, Direct determination of ibuprofen and ibuprofen acyl glucuronide in plasma by high-performance liquid chromatography using solid-phase extraction. The Journal of Chromatography, 1993. 614: p. 109-116.

105.Rustum, A.M., Assay of ibuprofen in human plasma by rapid and sensitive reversed-phase high-performance liquid chromatography:application to a single dose pharmacokinetic study. Journal of Chromatographic Science, 1991. 29: p. 16-20.

106.Menzel-Soglowek, S., G. Geisslinger, and K. Brune, Stereoselective high-performance liquid chromatographic determination of ketoprofen, ibuprofen and fenoprofen in plasma using a chiral alpha 1-acid glycoprotein column. The Journal of Chromatography, 1990. 532: p. 295-303.

107.Blagbrough, I.S., et al., High-performance liquid chromatographic determination of naproxen, ibuprofen and diclofenac in plasma and synovial fluid in man. The Journal of Chromatography, 1992. 578: p. 251-257.


108.Mehvar, R., F. Jamali, and F.M. Pasutto, Liquid-chromatographic assay of ibuprofen enantiomers in plasma. Clinical Chemistry, 1988. 34: p. 493-496.

109.Al Za''abi, M.A., et al., A rapid and sensitive microscale HPLC method for the determination of indomethacin in plasma of premature neonates with patent ductus arteriousus. The Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006. 830: p. 364-367.

110.Sato, J., et al., Simple, rapid and sensitive method for the determination of indomethacin in plasma by high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications, 1997. 692: p. 241-244.

111.Product Information: Motrin(R), ibuprofen. The Upjohn Company, Kalamazoo, MI, 1999h.

112.Product Information: Indocin(R), indomethacin. Merck & Co., Inc., West Point, PA, 2002

113.Cox, P.G., W.M. Moons, F.G. Russel, and C.A. van Ginneken, Renal handling and effects of S(+)-ibuprofen and R(-)-ibuprofen in the rat isolated perfused kidney. British Journal of Pharmacology, 1991. 103: p. 1542-1546.

114.de Zeeuw, D., H.R. Jacobson, and D.C. Brater, Indomethacin secretion in the isolated perfused proximal straight rabbit tubule. Evidence for two parallel transport mechanisms. The Journal of Clinical Investigation, 1988. 81: p. 1585-1592.

115.Dietzel, K., W.S. Beck, H.T. Schneider, G. Geisslinger, and K. Brune, The biliary elimination and enterohepatic circulation of ibuprofen in rats. Pharmaceutical Research, 1990. 7: p. 87-90.

116.Beck, W.S., G. Geisslinger, H. Engler, and K. Brune, Pharmacokinetics of ibuprofen enantiomers in dogs. Chirality, 1991. 3: p. 165-9.

117.Rudy, A.C., P.M. Knight, D.C. Brater, and S.D. Hall, Stereoselective metabolism of ibuprofen in humans: administration of R-, S- and racemic ibuprofen. The Journal of pharmacology and experimental therapeutics, 1991. 259: p. 1133-1139.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top