跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴炘
研究生(外文):Tai Hsin
論文名稱:酚醛樹脂/二氧化矽奈米混成防火複合材料增韌製程及其特性之研究
論文名稱(外文):The Toughening Process and Properties of Novolac type Phenolic/SiO2 Flame Retardant Nanocomposite
指導教授:馬振基馬振基引用關係
指導教授(外文):Chen-Chi M. Ma
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:溶膠-凝膠法防火增韌酚醛樹脂聚矽氧烷奈米
外文關鍵詞:sol-gelflame retardanttougheningPhonolic resinpolydimethylsiloxanenano
相關次數:
  • 被引用被引用:12
  • 點閱點閱:789
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以改質聚二甲基矽氧烷(Polydimethylsiloxane,簡稱PDMS),增韌溶膠-凝膠法所製備之Novolac Phenolic Resin/SiO2有機/無機奈米混成複合材料,探討其增韌後的物性及化性的差異及其影響,並測試增韌後有機/無機奈米混成複合材料的各種機械性質、防火性質。
本研究選用分子量為400~700並以含OH基末端的PDMS來作探討。因PDMS本身與利用3-Glycidoxypropyl trimethoxysilane(簡稱GPTS)改質過後的Novolac type Phenolic Resin並不相容,因此,選擇了三種不同的偶合劑(3-Glycidoxypropyl trimethoxysilane, GPTS, 3-Isocyanatopropyltriethoxysilane, IPTS, Tetraethoxysilan, TEOS),藉以改善並比較這三種偶合劑在改質PDMS後與Novolac Phenolic Resin/SiO2(簡稱奈米酚醛樹脂)相容的效果。
由FT-IR圖譜得知,在3312cm-1聚二甲基矽氧烷末端之氫氧基特性吸收消失,並在1100 cm-1產生新的C-O拉伸,再透過1H NMR鑑定新生成之氫氧基,確定GPTS成功改質接上PDMS末端之氫氧基。由FT-IR圖譜得知,2272 cm-1為IPTS之NCO官能基特性吸收,藉由觀察該特性吸收消失並在1680~1630 cm-1與1640~1550 cm-1生成urethane官能基之特性吸收,確定IPTS成功改質接上PDMS末端之氫氧基。由FT-IR圖譜得知,在3312cm-1聚二甲基矽氧烷末端之氫氧基特性吸收消失,並在1100~1080 cm-1觀察到分裂為二的peak生成,此為C-O拉伸與Si-O-Si生成,由此確定TEOS成功改質接上PDMS末端之氫氧基。
研究結果顯示,將未改質的PDMS利用溶膠-凝膠法摻混於奈米酚醛樹脂中,由於PDMS本身分子鏈較長,末端官能基蜷縮於分子內,無法與酚醛樹脂形成良好的相互作用,譬如氫鍵、共價鍵等,造成乾燥過程中嚴重龜裂。經由偶合劑改質過後之PDMS不僅外觀平整,且不易龜裂。在添加少量(10ph以下)改質過後之PDMS於奈米酚醛樹脂中,在結構鑑定方面,利用29Si Solid State NMR分析圖譜顯示,利用改質過後的PDMS與奈米酚醛樹脂一同縮合後所形成矽的結構以Q3、Q4與T3為主,顯示該材質為Si-O-Si矽的網狀結構。
在熱性質方面利用GPTS-PDMS與奈米酚醛樹脂一同縮合之材料,其5%weight loss 溫度,由381℃降到369℃,而利用IPTS-PDMS之材料的5%weight loss 溫度則由381℃降到362℃,而利用TEOS-PDMS之材料之5% weight loss溫度則由381℃提升至401℃。
在機械性質方面,利用GPTS-PDMS加入奈米酚醛樹脂之耐衝擊強度(impact strength)由8.4kJ/m2增加到10.8 kJ/m2,增加28.6%,抗折強度由77.2MPa提升至85.1MPa;利用IPTS-PDMS加入奈米酚醛樹脂之耐衝擊強度由8.4kJ/m2增加到8.9 kJ/m2,增加5.9%,抗折強度由77.2MPa下降至69.1MPa;利用TEOS-PDMS加入奈米酚醛樹脂之耐衝擊強度由8.4kJ/m2增加到10.1 kJ/m2,增加19.9%,抗折強度由77.2MPa下降至72.4MPa。燃燒性質方面,極限氧指數(L. O. I. )皆介於35~38之間,水平燃燒測試(U. L.)則都符合94V-0。
In this study, Polydimethylsiloxanes (hydroxyl group terminated) are used to toughen 3-Glycidoxypropyltrimethoxysilane (GPTS) modified novolac type phenolic resin / SiO2 organic/inorganic nanocomposite material via sol-gel method. Effects of polydimethylsiloxane on the physical, chemical, mechanical and thermal properties of nanocomposite material were discussed. The polydimethylsiloxanes with various molecular weights (MW = 400~700) were used. Moreover, due to the incompatibility of polydimethylsiloxane and GPTS modified novolac type phenolic resin, three coupling agents (3-Glycidoxypropyl trimethoxysilane, GPTS, 3-Isocyanatopropyl triethoxysilane, IPTS, Tetraethoxysilan, TEOS) were used to modify polydimethylsiloxane and the properties were investigated.
From FT-IR spectra studies, it was found that the peak of hydroxyl group at the ends of PDMS is disappear at 3312 cm-1 and produced a new peak of C-O stretching at 1100 cm-1. It was also found that the peak of isocyanato group of IPTS disappeared at 2272 cm-1 and peaks of urethane group at 1680~1630 cm-1 and 1640~1550 cm-1 were shown. The peak of hydroxyl group at the ends of PDMS disappeared at 3312 cm-1 and split peaks at 1100 cm-1~1080 cm-1 can be seen. The split peaks are the absorption of C-O stretching and Si-O-Si antisymmetric stretching. It is confirmed that the three coupling agents (GPTS, IPTS and TEOS) are successfully modified PDMS.
29Si solid-state NMR spectra revealed that Q3, Q4 and T3 are the major environments for GPTS modified phenolic resin nanocomposite condensed with modified PDMS (less than 10 phr), i.e., it formed the network structure of Si-O-Si bonding. From thermal property study, the Td5 (Temperature of 5% weight loss) of GPTS modified phenolic resin nanocomposite condensing with GPTS modified PDMS decreased from 381℃ to 369℃, decreased from 381℃ to 362℃ for IPTS modified PDMS and increased from 381℃ to 401℃ for TEOS modified PDMS. From mechanical property study, the impact strength of GPTS modified phenolic resin nanocomposite which condensed with GPTS modified PDMS increased from 8.4kJ/m2 to 10.8 kJ/m2, increased from 8.4 kJ/m2 to 8.9 kJ/m2 for IPTS modified PDMS and increased from 8.4 kJ/m2 to 10.1 kJ/m2 for TEOS modified PDMS. The flexural strength of GPTS modified phenolic resin nanocomposite which condensed with GPTS modified PDMS increased from 77.2 MPa to 85.1 MPa, decreased from 77.2 MPa to 69.1 MPa for IPTS modified PDMS and decreased from 77.2 MPa to 72.4 MPa for TEOS modified PDMS. The L. O. I. values of all nanocomposite reached 35~38 and the U. L. values are 94V-0.
中文摘要………………………………………………………………….I
英文摘要………………………………………………………………..IV
目錄……………………………………………………………………..VI
圖目錄…………………………………………………………………...X
表目錄…………………………………………………………………XV
第一章、緒論……………………………………………………………1
第二章、理論基礎與文獻回顧………………………………………….42-1 酚醛樹脂種類之製備及其特性………………………………….4
2-1-1 Novolac type酚醛樹脂之製備及特性………………….....4
2-1-2 Resole type酚醛樹脂之製備及特性………….…………..8
2-1-3 酚醛樹脂之性質…………………………………………..11
2-1-4 酚醛樹脂增韌改質之研究………………………………..13
2-2 溶膠-凝膠法…………………………………………………..…18
2-2-1 溶膠-凝膠技術之簡介…………………………………….18
2-2-2 溶膠-凝膠法反應變因及其影響………………………….20
2-2-3 溶膠-凝膠技術之發展…………………………………....23
2-3增韌劑:聚二甲基矽氧烷(Polydimethylsiloxane)………......….30
2-3-1 PDMS種類及其特性….………..…………...……………30
2-3-2 PDMS增韌之原理……………..…………………………32
2-3-3 PDMS增韌文獻………………..…………………………33
第三章、研究目的與內容………………………………………………36
3-1 研究目的……………………………………………………..…36
3-2 研究內容………………………………………………………..37
第四章、實驗方法………………………………………………………39
4-1 實驗藥品……………………………………………………..…39
4-2 實驗儀器及設備……………………………………………..…41
4-3 實驗流程……………………………………………………..…43
4-4 實驗步驟………………………………………………………..44
4-4-1 改質酚醛基材之前趨物製備………………………....…44
4-4-2 改質聚二甲基矽氧烷(PDMS)之前趨物製備…………..45
4-4-3酚醛樹脂/二氧化矽/聚二甲基矽氧烷形成之有機/無機混成材料………………………...……………………….…48
4-5 測試方法……………………………………………………..…52
第五章、初步成果與討論…………..…………………………………..57
5-1利用FT-IR鑑定聚合物結構…………………………………....57
5-1-1利用FT-IR鑑定GPTS與酚醛樹脂間的結構……….….57
5-1-2利用FT-IR鑑定GPTS與PDMS(聚二甲基矽氧烷)間
的結構…………………………………….………………62
5-1-3利用FT-IR鑑定IPTS與PDMS(聚二甲基矽氧烷)間
的結構………………………………………………….…65
5-1-4利用FT-IR鑑定TEOS與PDMS(聚二甲基矽氧烷)間
的結構……………………………………………………..68
5-2 外觀分析……………………………………………………..….71
5-3 1H NMR結構鑑定…………………………………………..….72
5-3-1 GPTS改質PDMS結構鑑定…………………..………..72
5-3-2 IPTS改質PDMS結構鑑定……………………………..76
5-4 29Si Solid-State NMR結構鑑定………………….……………78
5-4-1 GPTS改質PDMS 29Si NMR結構鑑定…………….…81
5-4-2 IPTS改質PDMS 29Si NMR結構鑑定…………….......82
5-4-2 TEOS改質PDMS 29Si NMR結構鑑定…………..…......83
5-5 型態學之研究………………………………………………..….84
5-6 熱性質分析……………………………………………………...91
5-6-1 熱重損失分析(TGA)……………………………..….91
5-6-2 裂解動力學分析……………………………………..….97
5-7 燃燒性質分析…………………………………………..……..115
5-7-1 極限氧指數(L. O. I. )測試………………….……115
5-7-2 U. L. 測試………………………………………….....116
5-8 機械性質分析…………………………………………..……..119
5-8-1耐衝擊(impact)性質測試………………………..…119
5-8-2抗折強度(Flexural Strength)與抗折模數(Flexural
Modulus)測試結果分析……………….………………122
5-8-3 拉伸強度(Tensile Strength)測試………………………129
第六章、結論………………………………………………..………..136
第七章、參考文獻…………….………………………………………139
1. G. L. Wilkes, B. Drier, H. H. Huang, “Ceramers - Hybrid Materials Incorporating Polymeric Oligomeric Species into Inorganic Glasses Utilizing a Sol-Gel Approach”, Abstracts of Papers of the American Chemical Society, 190, p 109, 1985.
2. G. Odian, “Principle of Polymerization”, 3rd Edition, Chapter 2, p 123-132, 1991.
3. 村山新一著,洪純仁編譯,「酚醛樹脂」,復文書局,1988
4. Enio Kumpinsky, “Process Design and Control:A Study on Resol Type Phenol-Formaldehyde Runaway Reactions”, Ind. Eng. Chem. Res., 33, 2, p 285~291, 1994.
5. Marie-Florence Grenier-Loustalot, Stephane Larroque;Philippe Grenier, Jean-Paul Leca and Didier Bedel, “Phenolic Resins:1.Mechanisms and Kinetics of Phenol and of The First Polycondensates Towards Formaldehyde in Solution.”, Polymer, 35, 14, p 3046~3054, 1994.
6. Marie-Florence Grenier-Loustalot, Stephane Larroque and Philippe Grenier, “Phenolic Resins:5.Solid-State Physicochemical Study of Resoles with Variable F/P Ratios”, Polymer., 37, 4, p 639~650, 1996.
7. Marie-Florence Grenier-Loustalot, Stephane Larroque and Philippe Grenier and Didier Bedel, “Phenolic Resins:2. Influence of Catalyst Type on Reaction Mechanisms and Kinetics”, Polymer., 37, 8, p 1363~1369, 1996.
8. 馬振基編著,高分子複合材料,國立編譯館出版,正中書局印行,上冊,1995.
9. J. L. Hedrick, I. Yilgor, G. L. Wilkes, and J.E.McGrath, " Chemical Modification of Matrix Resin Networks with Engineering Thermoplastics. I. Phenolic Hydroxyl Terminated Poly(Aryl Ether Sulfone)-Epoxy System ", Polymer Bulletin, Vol.13, 201~208, 1985.
10. A. Matsumoto, K. Hasegwa, A. Fukuda, and K. Otsuki, " Study on Modified Phenolic Resin.I.Modification with Homopolymer Prepared from p-Hydroxyphenylmaleimide " , Journal of Applied Polymer Science, Vol. 43, 365~372,1991.
11. A. Matsumoto, K. Hasegwa, A. Fukuda, and K. Otsuki, " Study on Modified Phenolic Resin. II. Modification with P-Hydroxy phenylmaleimide / Styrene Copolymer ", Journal of Applied Polymer Science, Vol. 44, 205~212, 1992.
12. A. Matsumoto, K. Hasegwa, A. Fukuda, and K. Otsuki, "Study on Modified Phenolic Resin. II.Modification with p-Hydroxyphenyl maleimide/ Acrylic Ester Copolymer ", Journal of Applied Polymer Science, Vol. 44, 1547~1556, 1992.
13. A. Matsumoto, K. Hasegwa, and A. Fukuda, "Studies on Modified Phenolic Resin. IV. : Properties of Phenolic Resin Modified with 4-Hydroxyphenylmaleimide/ n-Butylacrylate Copolymer.", Polymer Inter-national, Vol. 30, No.30, 65~72, 1992.
14. Ishii Toshake, “Modification of Epoxy Resins by Resol Type Phenolic Resin”, Japanese Journal of Polymer Science and Technology, Vol.49, No.8, 671~676, 1992.
15. Huai-Chim Chang, “Study of the Synthesis and the Compatibility of Phenolic/ Poly (N-butyl Acrylate) IPNS”, Polymeric Materials Science and Engineering, Vol.9, No.2. 33~37, 1993.
16. X. Zhang, and D. H. Solomon, "Phase Structures of Hexamine Cross-Linked Novolac Blends. I. Blend with poly(methyl methacrylate) ", Macromolecules, Vol. 27, No. 18, 4919 ,1994.
17. Gang , Yu, “ Study on Phenolic Resin Modified with Tung Oil-Curing Behavior and Kinetic Analysis ”, Gaofenzi Cailiao Kexue Yu Gong-cheng / Polymeric Materials Science And Engineering, Vol.11, No.2, 121~ 126, 1995.
18. Hew-Der Wu; Ming-Shiu Li; Chen-Chi M. Ma; Yio-Don Wu, ”Polyurethane toughened phenolic resin for pultruded composites.”, Annual Technical Conference-ANTEC, Conference Proceedings of the 53rd Annual Technical Conference. Part 2(of 3) May 7-11 1995 v2 1995
19. Hew-Der Wu;Ming-Shiu Lee; Yio-Don Wu; Yi-Feng Su; Chen-Chi M. Ma, “Pultruded fiber-reinforced polyurethane toughened phenolic resin. Ⅱ. Mechanical properties, thermal properties, and flame resistance”, Journal of Applied Polymer Science v62 n1 Oct 3 1996.
20. Hatsuo Ishida.; Douglous I Allen, “Physical and Mechanical Characterization of Non-Zero Shrinkage Polybenzoxazines”, Journal of Polymer Science,Part B:Polymer Physics, Vol.34, No.6 , 1019~1030, 1996.
21. Wen-Yen, Chiang and Dong-Meau, Chang, “Mechanical and Dynamic Properties of Graft Polyurethane/Allyl Novolac Resin Simultaneous Interpenetrating Network”, Polymer International, Vol.39, No.1, 55~ 60, 1996
22. Aijuan ,Gu; Guozheng ,Liang and Liwen ,Lan, “Modification of Polyaralkyl-Phenolic Resin and Its Copolymer with Bismalemide”, Journal of Applied Polymer Science, Vol. 59, No.6, 975~979, 1996
23. Her-Der Wu; Chen-Chi M. Ma; and Char-Ming Lin, “ Processability and Properities of Phenoxy Resin Toughened Phenolic Resin Composites”, Journal of Applied Polymer Science,Vol.63, 911, 1997.
24. Chen-Chi M. Ma; Hew-Der Wu; Yi-Feng Su; Ming-Shiu Lee; Yiu-Don Wu, “Pultruded fiber reinforced novolac type phenolic composite processability, mechanical properties and flame resistance”, Composites: Part A: Applied Science and Manufacturing v28 n 9-10 1997.
25. Chen-Chi M. Ma; Chih-Tsung Lee; Hew-Der Wu, “Pultruded fiber reinforced poly(ethylene oxide) toughened novolac type phenolic resin: Mechanical properties, thermal stability, and flame retardance.”, International SAMPE Technical Conference Composites for Real World Proceedings of the 1997 29th International SAMPE Technical Conference Oct 28-Nov 1 1997 v29 1997
26. Chen-Chi M. Ma; Chih-Tsung Lee; Hew-Der Wu, “Mechanical properties, thermal stability, and flame retardance of pultruded fiber-reinforced poly(ethylene oxide)-toughened Novolac-type phenolic resin.”, Journal of Applied Polymer Science v69 n 6 Aug 8 1998.
27. Chen-Chi M. Ma; Han-Thing Tseng ; Hew-Der Wu, “Blocked diisocyanate polyester-toughened Novolac-type phenolic resin: Synthesis, characterization, and properties of composites.”, Journal of Polymer Science, Part B: Polymer Physics v36 n 10 Jul 30 1998.
28. “以溶膠-凝膠法製作酚醛樹脂/二氧化矽之有機-無機混成材料以及其在纖維強化複合材料上之製備與應用”, 林佳民, 國立清華大學博士論文, 2000.
29. “以溶膠-凝膠法製備Novolac type Phenolic/SiO2混成有機/無機奈米複合材料及其性質之研究”, 吳岱霖, 國立清華大學碩士論文, 2002.
30. C. J. Brinker and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., p. 2-8, 1990.
31. “納米材料製備技術”, 王世敏, 許祖勛, 傅晶, 北京化學工業出版社, 2001.
32. “納米複合材料”, 徐國財, 張立德, 北京化學工業出版社, 2001.
33. “溶膠凝膠反應製備磷/矽環氧樹脂高分子及其在難燃之應用”,廖信豪, 國立清華大學碩士論文, 1996.
34. G. L. Wilkes, B. Orler and H. Huang, Polym. Bull., “Ceramers:Hybrid Materials Incorporating Polymeric/Oligomeric Species with Inorganic Glasses by a Sol-Gel Process.”, 14, p. 557, 1985.
35. M. W. Ellsworth and B. M. Novak, J. Am. Chem. Soc., “Mutually Interpenetrating Inorganic-Organic Networks. New Routes into Nonshrinking Sol-Gel Composite Materials.”, 113, p. 2756, 1991.
36. F. Surivet, T. M. Lam, J. P. Pascault and C. Mai, “Organic Inorganic Hybrid Materials .2. Compared Structure of Polydimethylsiloxane and Hydrogenated Polybutadiene Based Ceramers”, Macromolecules, 25, 21, p. 5742-5751, 1992.
37. Y. Wei, D. Yang and L. Tang, J. Mater. Res., “Synthesis, Characterization, and Properties of New Polystyrene-SiO2 Hybrid Sol-Gel Materials.”, 8, p. 1143, 1993.
38. S. Wang, Z. Ahmad, and J. E. Mark, Polym. Bull., “A Polyamide-silica Composite Prepared by the Sol-Gel Process.”, 31, p. 323, 1993.
39. L. Mascia and A. Kioul, “Polyimide-Silica Hybrid Materials by Sol-Gel Processing”, J. Mater. Sci. Letters, 13, p. 641-643, 1994.
40. S. Wang, Z. Ahmad and J. E. Mark, “Preparation and Properties of High-Clearity Polyamide-Silica Hybrid Materials”, Macromol. Rep., Vol. A31, p. 411, 1994.
41. D. Tian, Ph. Dubois and R. Jerome, “A New Poly(- caprolactone) Containing Hybrid Ceramer Prepared by the Sol-Gel Process”, Polym., 37, 17, p. 3983-3987,1996.
42. K. D. Suh, J. H. Park and S. J. Choi, J. M. S. Pure Appl. Chem., “Composite of SiO2 and Hydrogel Having Microphase Separated Structure : Physical Properties Dependence on pH.”, A(35), 1695, 1998.
43. W. C. Chen, S. J. Lee, “Synthesis and characterization of poly(methyl methacrylate)-silica hybrid optical thin films”, Polym. J., 32, 1, p67~72, 2000.
44. K. H. Wu, T. C. Chang, J. C. Yang and H. B. Chen, “Organic- inorganic hybrid materials. II. Chain mobility and stability of polysiloxaneimide-silica hybrids”, J. Appl. Polym. Sci., 76, 6, p965-973, 2001.
45. Y. G. Hsu and K. H. Lin, “Preparation and properties of ABS-silica nanocomposites through sol-gel process under the catalyzation of different catalysts”, J. Polym. Research, 8, 1, p69~76, 2001.
46. Y. G. Hsu, L. C. Tu and K. H. Lin, “Hybrid materials derived from modified styrene-butadiene-styrene copolymer (SBS) and silica through the sol-gel process”, J. Polym. Research, 8, 1, p37~47, 2001.
47. S. H. Zhong, C. F. Li, X. F. Xiao, “Preparation and characterization of polyimide-silica hybrid membranes on kieselguhr-mullite supports”, J. Membr.
48. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, Characterization and Thermal Properties of Novel Phenolic Resin/Silica Hybrid Ceramer”, Journal of Polymer Degradation and Stability (reviesd), 2003.
49. Chin-Lung Chiang, Chen-Chi M. Ma, “Thermal-Oxidative Degradation of Novel Epoxy Containing Silicon and Phosphorous Nanocomposites”, European Polymer Journal, 39/4, pp825-830,2003.
50. 杜逸虹, 聚合體學, 三民書局, 民67
51. 王華林, 史鐵鈞, 李學良等, 高分子材料科學與工程, 16(5), p5, 2000.
52. K. H. Schimmel, G. Heinrich, “Influence of the molecular weight distribution of network chains on the mechanical properties of polymer networks”, Colloid and Polymer Science, v269, n10, p1003-1012, 1991.
53. Ulibarri, Tamara A. Bates, Susan E., Black, Eric P., Schaefer, Dale W., Beaucage, W. Greg, Lee, Michael K., Moore, Pat A., Burns, Gary T., “Solvent effects on silica domain growth in silica/siloxane composite materials”, International SAMPE Technical Conference 27 Oct 9-12 1995, p560-567, 1995.
54. Hyeon-Lee, Jingyu, Guo, Ling, Beaucage, Gregory, Macip-Boulis, M. Antonieta, Yang, Arthur J.M., ” Morphological development in PDMS/TEOS hybrid materials”, Journal of Polymer Science, Part B: Polymer Physics, v34, n17, John Wiley & Sons Inc. p3073-3080, Dec 1996.
55. Hyeon-Lee, Jingyu, Guo, Ling, Beaucage, Gregory, Macip-Boulis, M. Antonieta, Yang, Arthur J.M., “Morphological development in PDMS/TEOS hybrid materials”, Journal of Polymer Science, Part B: Polymer Physics, v34, n17, John Wiley & Sons Inc., p 3073-3080, Dec 1996.
56. Mackenzie, D. John, Bescher, P. Eric, “Structures, properties and potential applications of ormosils”, Journal of Sol-Gel Science and Technology, v13, n1-3, p 371-377, Kluwer Academic Publishers, 1998.
57. Ling Guo, H. L. Jingyu, Gregory Beaucage, “Structure analysis of poly(dimethylsiloxane) modified silica xerogels”, Journal of Non-crystalline Solids, 243, p61-69, 1999.
58. B. Zhu, D. E. Katsoulis, J. R. Keryk, F. J. McGarry, “Toughening of a polysilsesquioxane network by homogeneous incorporation of polydimethylsiloxane segments”, Polymer, 41, 20, p 7559-7573, Elsevier Science Ltd., 2000.
59. Y. Aburatani, K. Tsuru, S. Hayakawa, A. Osaka, “Heating effect on properties of organic-inorganic hybrids containing colloidal silica particles”, Key Engineering Materials, v 218-220, p 445-448, Nov 14-17, 2002.
60. 胡德, 高分子物理與機械性質(下), 渤海堂, 民79
61. T. C. Chang, Y. T. Wang, Y. S. Hong, Y. S. Chiu, “Organic—inorganic hybrid materials. V. Dynamics and degradation of poly(methyl methacrylate) silica hybrids”, Journal of Polymer Science, 38, p 1972-1980, 2000
62. Y. L. Liu, G. H. Hsiue, C. W. Lan, Y. S. Chiu, “Phosphorus-containing Epoxy for Flame Retardance: IV. Kinetics and Mechanism of Thermal Degradation”, Polym. Degrad. Stab., 56, 3, p.291, 1997
63. J. D. Cooney, M. Day, D. M. Wiles, “Thermal Degradation of Poly(ethyleneterephthalate): A Kinetic Analysis of Thermogravimetric Data”, J. Appl. Polym. Sci. 28,9, p.2887,1983
64. Takeo Ozawa, "A new Method of Analyzing Thermogravi-metric Data", J. Thermal Anal., 38, 11, p. 1881-1886, 1965
65. Homer E. Kissinger, “Reaction Kinetic in Differential Thermal Analysis”, Analytical Chemistry, 29, 11, p.1702-1706, 1957
66. Chen-Chi M. Ma, Yi-Chang Du, Feng-Yih Wang, “Thermal degradation behaviors of poly(dimethylsiloxane)-urethane-graft- poly(methyl methacrylate) copolymers based on various diisocyanates”, Journal of materials science, 37, pp1247-1252, 2002.
67. Y. W. Chen-Yang, H. R. Chen, J.Y. Kau, H.C. Chen, J. L. Li and G. Y. Yuan, “Preparation and Properties of Flame-retardant Phosphate Salt-containing Polyurethane Foams”, The 8th Asian Chemical Congress, p.695, (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊