跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建融
研究生(外文):Huang, Chien-Jung
論文名稱:制定饋入低剖面天線的標準流程圖及使用反射相位萃取人造磁導體頻帶
論文名稱(外文):Formulation of a Standard Flow Chart of Feeding the Low Profile Antenna and Extraction of the Artificial Magnetic Conductor Band from the Reflection Phases
指導教授:黃謀勤
指導教授(外文):Malcolm Ng Mou Kehn
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:64
中文關鍵詞:低剖面天線高阻抗平面人工磁導體反射相位
外文關鍵詞:low profile antennahigh impedance surfaceartificial magnetic conductorreflection phase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在設計低剖面天線時最常使用的方法就是將傳統天線和高阻抗平面組合在一起,這是因為高阻抗平面可以模擬完美磁導體的特性,而用以增加天線的輻射。但儘管如此,如何去饋入這樣的低剖面天線仍然是一個很大的研究課題,這是因為高阻抗平面雖然擁有可以近似人工磁導體的條件,但卻被頻率所限制。這代表高阻抗平面只能在特定的頻率範圍內才能擁有完美磁導體的特性,而這個頻帶就稱為人工磁導體頻帶。目前對於低剖面天線已經有了非常多且深入的研究資料,但仍然沒有一個有系統的饋入方法。有鑑於此,制定一個具有可重複性的系統方法去匹配低剖面天線就成為了我們想要達成的目的。

為了實現我們的想法,我們必須先了解反射相位,這是因為當我們談論到高阻抗平面結構時,很多研究者會使用反射相位來描述它的人工磁導體的頻帶,此頻帶位於反射相位±45°之間(其反射相位0°具有完美磁導體的特性)。儘管如此,這並沒有考慮到傳統天線的輻射場型。由於一般在定義反射相位時,最常見的是使用垂直入射的電磁波去測量,但在高阻抗平面上的傳統天線所發出之電磁波並非只有垂直入射。因此,我們的首要任務就是去了解並分析傳統天線的場型,再用以萃取人工磁導體頻帶。

A popular way to design a low profile antenna is by combining the traditional antenna with a high impedance surface (HIS), because the HIS can mimic the property of the perfect magnetic conductor (PMC) to improve the radiation. However, the way to feed the low profile antenna is still a big issue because the artificial magnetic conductor (AMC) condition of the HIS is a frequency-dependent property. It means the frequency band in which the PMC property of the HIS prevails is limited. This band is termed as the AMC region. There had been intensive research performed on the low profile antenna but there has not been a consistent, let alone identical method for feeding the low profile antenna. In consideration of that, matching the low profile antenna by a systematic way is our purpose.

To fulfill our idea, we should introduce the reflection phase first, because when talking about the HIS structure, many researchers usually characterize the AMC region of the HIS by the frequency range in which the reflection phase lies between ±45° (0° of reflection phase pertains to PMC property). However, this does not consider the radiation pattern of the traditional antenna. Because the reflection phase of the general definition is defined by the normal incident wave, the waves excited by the traditional antenna on the HIS are not all normal incident waves toward the HIS. Therefore surveying the pattern of the traditional antenna becomes the priority to extract the AMC band.

CHINESE ABSTRACT………………………………………………………………i
ENGLISH ABSTRACT………………………………………………………………ii
ACKNOWLEDGEMENT………………………………………………………………iii
TABLE OF CONTENTS ……………………………………………………………iv
LIST OF FIGURES ………………………………………………………………vi
Chapter 1 Introduction………………………………………………1
1.1 Motivation……………………………………………………………1
1.2 High impedance surface……………………………………………2
1.3 Low profile antenna…………………………………………………3
1.4 Reflection phase……………………………………………………4
Chapter 2 Formulate a standard flow chart of feeding
the low profile antenna………………………………11
2.1 Design the standard flow chart of feeding the low
profile antenna……………………………………………………11
2.2 The example of the low profile antenna composed of the
corrugated surface and the half-wave dipole antenna……12
2.3 Verify the simulation result and the measurement
result…………………………………………………………………20
Chapter 3 Extract the AMC region of the HIS from the
radiation pattern of the traditional antenna
and the reflection phases of the HIS………………23
3.1 The radiation pattern of the traditional half-wave
dipole antenna………………………………………………………23
3.2 The global definition of the reflection phase……………25
3.3 Extract the AMC region of the HIS……………………………26
3.4 Redesign the low profile antenna in Section 2.2 by
the effective reflection phase…………………………………29
3.5 Verify the simulation result and the measurement
result…………………………………………………………………35
Chapter 4 Apply to the different type of the HIS……………38
4.1 Frequency selective surface (FSS)……………………………38
4.2 Calculate the effective reflection phase according
to the radiation pattern of the traditional antenna……39
4.3 Utilize the standard flow chart to design the
low profile antenna………………………………………………41
4.4 Verify the simulation result and the measurement
result…………………………………………………………………48
Chapter 5 Apply to the different type of the
traditional antenna……………………………………51
5.1 The structure and the radiation pattern of the
traditional folded dipole antenna……………………………51
5.2 Extract the AMC region of the FSS……………………………52
5.3 Utilize the standard flow to design the low
profile antenna……………………………………………………53
5.4 Verify the simulation result and the measurement
result…………………………………………………………………60
Chapter 6 Conclusion…………………………………………………62
Reference………………………………………………………………………63


[1] F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, pp. 2691–2703, Oct. 2003.
[2] A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, pp. 209–215, Jan. 2005.
[3] A. Vallecchi, J. R. D. Luis, F. Capolino, and F. D. Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propagat., vol. 60, no. 1, pp. 51–62, Jan. 2012.
[4] S. R. Best and D. L. Hanna, “Design of a broadband dipole in close proximity to an EBG ground plane,” IEEE Antennas Propagat. Mag., vol. 50, no. 6, pp. 52–64, Dec. 2008.
[5] H. Mosallaei and K. sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propagat., vol. 52, no. 9, pp. 2403–2414, Sep. 2004.
[6] C. R. Simovski, P. d. Maagt, and I. V. Melchakova, “High-impedance surfaces having stable resonance with respect to polarization and incidence angle,” IEEE Trans. Antennas Propagat., vol. 53, no. 3, pp. 908–914, Mar. 2005.
[7] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexoplous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2059–2074, Nov. 1999.
[8] L. Akhoondzadeh-Asl, D. J. Kern, P. S. Hall, and D. H. Werner, “Wideband dipoles on electromagnetic bandgap ground planes,” IEEE Trans. Antennas Propagat., vol. 55, no. 9, pp. 2426–2434, Sep. 2007.
[9] M. Z. Azad and M. Ali, “Novel wideband directional dipole antenna on a mushroom like EBG structure,” IEEE Trans. Antennas Propagat., vol. 56, no. 5, pp. 1242–1250, May 2007.
[10] Y. Zhang, J. v. Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, pp. 2704–2712, Oct. 2003.
[11] L. Li, X. Dang, L. Wang, B. Li, H. Liu, and C. Liang, “Reflection phase characteristics of plane wave oblique incidence on the mushroom-like electromagnetic band-gap structures,” in Proc. Asian-Pacific Microwave Conf. APMC2005, Dec. 4–7, 2005, vol. 3, 1606714.
[12] K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas Propagat., vol. 55, no. 5, pp. 1239–1245, May 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top