跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳登政
研究生(外文):Chen, Teng-Cheng
論文名稱:一個應用於-55°C到125°C操作在1.8伏特、53.4微瓦、0.25°C解析度之全CMOS溫度感測器
論文名稱(外文):A 1.8V 53.4uW CMOS Temperature Sensor with -55°C to 125°C Temperature range and 0.25°C Resolution
指導教授:闕河鳴闕河鳴引用關係
指導教授(外文):Herming, Chiueh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:65
中文關鍵詞:CMOS溫度轉換器
外文關鍵詞:CMOS TEMPERATURE SENSOR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一個低功率消耗且精密度高的溫度感測元件在環境溫度量測以及在生物醫學領域之應中辦演著不可或缺的角色,隨著積體電路技術(IC Technique)的進步,傳統的溫度感測器已經不適用於整合在低功率超大型積體電路(Low power VLSI)當中,因此,如何能設計出適用於低電壓、低功率消耗且易於整合在先進晶片系統當中的溫度感測器是一個熱門的研究方向。本篇論文提出一個適用-55°C~125°C之低功率全CMOS溫度感測器,並透過台積電0.18微米製程實現。
本篇論文提出的電路由高線性度的類比前端(Analog Front-end )廣範圍溫度感測器與後端的三角積分類比數位轉換器所組成。類比前端的溫度感測器以一個低功率的全CMOS PTAT架構來達成低電壓低耗電的操作,而後端的三角積分類比數位轉換器是由一個三角積分類比數位調變器與一個SINC3數位濾波器所組成,並以CDS的技巧消去低頻雜訊,而後端的SINC濾波器具備了抑制電力線雜訊的特性。而此電路可操在-55°C~125°C之間,而且有0.25°C的解析度,在功率損耗方面,僅消耗53.4微瓦特,對於每一筆資料轉換所需要的能量為2.67微焦耳。

A low power and high precision temperature sensing unit is an essential unit in environmental and biomedical temperature sensing application. With the development of Integrated-Circuit(IC) technology, the traditional temperature sensor is not suitable for integrating into low power VLSI circuit. Therefore, how to implement a low voltage, low power temperature sensor which can be easily integrated with advanced SOC is an important research. In this thesis, we implemented a 1.8V 53.4uW CMOS temperature sensor with -55°C to 125°C temperature range and 0.25°C resolution which is realized by TSMC 0.18um process.
In this thesis, the temperature sensor is composed of a high linearity analog front-end temperature sensor and backend sigma-delta analog to digital converter. The analog front-end sensor is realized by an all CMOS PTAT to achieve low power and low voltage operation. The backend ADC is composed of a sigma-delta modulator and a Sinc digital filter. This circuit can operate from -55°C to 125° with 0.25 resolutions and consume 53.4uW and 2.67uJ for single data conversion.

第一章 簡介………………………………………………………..……1
1.1 溫度感測器簡介………………………………………………………1
1.2 相關研究整理…….……………………………...………………..3
1.3 設計議題與挑戰…………………..……..….……………………5
1.4 研究動機與研究目的……………………..…….………..……………7
1.5 論文組織…………………….………………………………………….…8
第二章 系統分析………………….…………………..…………..….9
2.1 系統考量……………………….…………………………………...…9
2.1.1 系統規格…………………………………………………..…9
2.1.2 系統架構…………………….……………………..…………10
2.2 前端感測器架構………..…………………………………………...11
2.3 三角積分類比數位轉換器架構與系數選擇…..………………………...12
2.3.1 三角積分類比數位轉換器架選擇………………………………12
2.3.2 類比數位轉換器之參數選擇………………….……..…………13
2.4 系統分析總結…………………................…..………………………...15

第三章 電路實現…………………………………..…………..…16
3.1 類比前端溫度感測電路設計與實現…....………………………...16
3.1.1 適用於整合在三角積分調變器之溫度感測器原理介紹……….…16
3.1.2 互補式金氧半場效電晶體之正比絕對溫度參考電壓原理介紹..…18
3.1.3 前端溫度感測器內部子電路架構與設計..……………………..…19
3.1.4 前端溫度感測器電路模擬…………..……………………..…23
3.2 三角積分調變器電路設計與實現…….…...………………………...25
3.2.1 Folded Cascode運算放大器電路架構………………………..…25
3.2.2 Correlated Double Sampling (CDS) 技巧...……………………..…27
3.2.3 一位元量化器………………...……...…………………………..…28
3.2.4 Non-overlapping 時脈產生器….....…………………………..…28
3.2.5 三角積分調變器電路模擬…….….....…………………………..…29
3.3 數位濾波器之設計…...…………………...…………………………..30
3.4 全CMOS廣範圍溫度感測器電路模擬...………..……………………..33
第四章 量測結果與討論…………………………..………………..…36
4.1 量測環境設置……………………...………………………...36
4.2 量測結果………………………………...………………………...38
4.3 量測問題檢討…………………………………...………………………...47
4.4 利用外部電流源的量測結果…………………...………………………...50
4.5 量測總結與討論………………………………...………………………...59
第五章 結論……………………..…………………………………..…60
5.1 結論………………………………………...………………………...........60
5.2 未來設計目標………………………………………...…………………...61
參考文獻…..……………………..…………………………………..…62
[1] A.Bakker and J.H.Huijsing, High-Accuracy CMOS Smart Temperature Sensors, Boston, MA: Kluwer Academic, 2000.
[2] A.Bakker and J.H.Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J.Solid-State Circuits, vol. 31, no. 7, pp.933-937, Jul. 1996.
[3] Mike Tuthill, ”A Switched-Current, Switched-Capacitor Temperature Sensor in 0.6-um CMOS,” IEEE J.Solid-State Circuits, vol. 33, no. 7, pp. 1117-1122, Jul. 1998.
[4] Anton Bakker and Johan H. Huijsing, “A Low-Cost High-Accuracy CMOS Smart Temperature,” IEEE Europen Solid-State Circuits Conference, ESSCIRC 99, pp.302-305 Sept. 1999.
[5] M. A. P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker, and J. H. Huijsing, ”A CMOS Smart Temperature Sensor With a 3δInaccuracy of 0.5°C From -50°C to 120°C,” IEEE J.Solid-State Circuits, vol. 40, no. 2, pp. 454-461, Feb. 2005.
[6] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing,”A CMOS Smart Temperature Sensor With a 3δInaccuracy of 0.1°C From -55°C to 125°C,” IEEE J.Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
[7] Ho-Yin Lee, Chen-Ming Hsu, Ching-Hsing Luo, “CMOS thermal sensing system with simplified circuits and high accuracy for Biomedical Application,” IEEE Symposium on Circuits and Systems, pp. 4370-4374, 2006.
[8] Tso-sheng Tsai, Joseph and Herming Chiueh, “High Linear Voltage References for on-chip CMOS Smart Temperature Sensor from -60°C to 140°C,” IEEE International Symposium on Circuits and Systems, pp.2689-2692, May. 2008.
[9] J.Silva, U.-K.Moon, J. Steensgaard, and G. C. Temes, “A wideband low-distortation delta-sigma ADC topology,” Electron. Lett., vol. 37, no.12, pp. 737-738, June 2001.
[10] J. Markus, P. Deval, V. Quiquempoix, J. Silva, and G. C. Temes, ”Incremental Delta-Sigma Structures for DC Measurement: an Overview,” Conference on Custom Intergrated Circuits Conference, IEEE, pp. 41-48, Sept 2006.
[11] J. Markus, J. Silva, and G.C. Temes, ”Theory and applications of incremental Delta Sigma converters,” IEEE Trans. Circuits Syst I, vol. 51, no. 4, pp. 678-690, Apr 2004.
[12] V. Quiquempoix, P. Deval, A. Barreto, G. Bellini, J. Markus, J. Silva, and G. C. Temes, ”A Low-Power 22-bit Incremental ADC,” IEEE J.Solid-State Circuits, vol. 41, no. 7, July 2006.
[13] E. B. Hogenauer, ”An Economical Class of Digital Filters for Decimation and Interpolation,” IEEE Trans. Acoust, Speech, and Signal processing, vol. 29, no.2, pp. 455-162, Apr 1981.
[14] Pin-Han Su; Herming Chiueh, ”The design of low-power CIFF structure second-order sigma-delta modulator,” International Midwest Symposium on Circuits and Systems, Aug. 2009, pp. 377-380.
[15] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, Piscataway, NJ: IEEE Press/Wiley, 2005.
[16] R.Schreier. (2004). The Delta-Sigma toolbox v6.0 (Delsig). Mathworks, Natick, MA.
[17] H. Zare-Hoseini, I. Kale, and O. Shoaei, ”Modeling of Switched-Capacitor Delta-Sigma Modulators in SIMULINK,” IEEE Trans. Instrumentation and Measurement, vol. 54, no.4, Aug 2005.

[18] C.C. Enz and G.C. Temes, ”Circuit techniques for reducing the effecs of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov.1996.
[19] N. Saputra, M.A.P. Pertijs, K.A.A. Makinwa, and J.H. Huijsing, ”Sigma Delta ADC with a Dynamic Reference for Accurate Temperature and Voltage Sensing,” IEEE International Symposium on Circuits and Systems, pp. 1208-1211, May. 2008.
[20] Chih-Ming Chang, “The design and implementation of CMOS PTAT reference for monolithic temperature sensors,” Master Thesis of National Chiao-TungUniversity, Taiwan, July 2004.
[21] Li, Y.W.; Lakdawala, H.; Raychowdhury, A.; Taylor, G.; Soumyanath, K., “A 1.05V 1.6mW 0.45°C 3σ-resolution ΔΣ-based temperature sensor with parasitic-resistance compensation in 32nm CMOS,” in Proc. IEEE Int. Solid-State Circuit Conf., 2009, pp. 340-341.
[22] Van Vroonhoven, C.P.L.; Makinwa, K.A.A., “A CMOS Temperature-to-Digital Converter with an Inaccuracy of ± 0.5° C (3/spl sigma)from -55 to 125°C,” in Proc. IEEE Int. Solid-State Circuit Conf., 2008, pp. 576-637.
[23] Aita, A.L.; Pertijs, M.; Makinwa, K.; Huijsing, J.H., “A CMOS temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (3σ) from −70°C to 130°C,” in Proc. IEEE Int. Solid-State Circuit Conf., 2009, pp. 342-343.
[24] Kamran Souri, Mahdi Kashmiri, Kofi Makinwa, “A CMOS Temperature Sensor
with an Energy-Efficient Zoom ADC and an Inaccuracy of ±0.25°C (3σ) from
-40°C to 125°C,” in Proc. IEEE Int. Solid-State Circuit Conf., 2010, pp. 310-312.



[25] Mahdi Kashmiri, Michiel Pertijs, Kofi Makinwa., “A Thermal-Diffusivity-Based
Frequency Reference in Standard CMOS with an Absolute Inaccuracy of ±0.1% from -55°C to 125°C”, in Proc. IEEE Int. Solid-State Circuit Conf., 2009, pp. 342-343
[26] Kamran Souri and Kofi Makinwa,” A 0.12mm2 7.4uW Micropower Temperature
Sensor with an Inaccuracy of ±0.2°C (3σ) from -30°C to 125°C,” IEEE Europen Solid-State Circuits Conference, ESSCIRC, vol. 40, no. 12, pp. 2805-2815, 2010.
[27] Shih-Yu Wen, “A 1.8V 12.9uW Sigma-Delta A/D converter for a -55˚C ~125˚C smart temperature sensor, ”Master Thesis of National Chiao-TungUniversity, Taiwan, Nov. 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top