跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李高源
研究生(外文):Kao Yuan Lee
論文名稱:篩選具有延長壽命潛力之中草藥及其分子機制之探討
論文名稱(外文):Screening of potential herbal medicines for life extension and investigation of their molecular mechanisms
指導教授:陳金銓
指導教授(外文):C. C. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:中醫學系天然藥物
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:蓮心延長壽命抗老化老化SIRT1老化相關疾病酵母菌
外文關鍵詞:Plumula NelumbinisExtend lifespanAnti-agingAgingSIRT1Age-related diseasesSaccharomyces cerevisiae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
老化是每種生物體的必經過程,但老化常常伴隨著老化相關疾病,例如阿茲海默症、第二型糖尿病、記憶力衰退等等。研究指出生物體老化與老化相關疾病的產生有關,已知的抗老化藥物也具有改善老化相關疾病的功效。尋找延緩老化相關藥物,也有機會用於老化相關疾病的治療。到目前為止,儘管人類不斷在尋找能夠延長壽命的物質,但影響人體老化的相關機制牽連著許多複雜要素,因此找到能夠延長壽命的藥物並不多。
本論文利用Mother enrichment program (MEP) 快篩系統,發現蓮心酒萃物可能具有延長酵母菌壽命之效果。接著以Replicative life span (RLS) analysis驗證蓮心酒萃物可以延長酵母菌RLS的效果,發現蓮心酒萃物經由Sir2-dependent路徑延長酵母菌RLS。我們進一步利用MEP analysis篩選從蓮心酒萃物分離出的純化物,發現到純化物PN6在MEP analysis中可以增加酵母菌壽命。利用RLS analysis再次驗證 PN6確實能夠增加酵母菌RLS。我們也發現 PN6是經由Sir2-dependent路徑延長酵母菌RLS。除此之外,我們也發現PN6的類似物PN6-A在RLS analysis也能夠增加酵母菌RLS,並經由Sir2-dependent路徑延長酵母菌RLS且發現蓮心酒萃物與PN6-A皆能顯著性提升SIRT1/Sir2活性,蓮心酒萃物還能夠顯著性提升細胞內的NAD+濃度。
Aging is a process that happens to most creature, and it is often accompanied with aging-related diseases. It is important to find aging-delaying drugs as it can be used in treatment of aging-related diseases. This study utilized rapid test system of mother enrichment program (MEP), and found that ethanolic extract of Plumula Nelumbinis may have lifespan extension effect in yeast. Furthermore, we used replicative lifespan analysis (RLS) to confirm the lifespan extension activity of ethanol extract of Plumula Nelumbinis, and observed that it extends replicative lifespan in yeast through Sir2-dependent pathway. Moreover, by MEP, we also found a compound eluded form Plumula Nelumbinis extract, PN6 has a potential ability to increase lifespan in yeast. Next, our RLS analysis demonstrated that PN6 elevates RLS in yeast through Sir2-dependent pathway. We also found that the analogs of PN6, PN6-A possessed great ability to extend lifespan in yeast through Sir2-dependent pathway ; ethanolic extract of Plumula Nelumbinis and PN6-A both significantly induced SIRT1/Sir2 activity-- ethanolic extract of Plumula Nelumbinis also could increase NAD+ level in vitro. Based on the above results, we concluded that PN6 and PN6-A have considerable potential for extending lifespan and treating aging-related diseases.
指導教授推薦書
口試委員審定書
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xi
縮寫表 xii
第一章 簡介 1
1.1 研究動機 1
1.2 老化學說 1
1.3 酵母菌於老化研究上之優勢 3
1.4 Chronological life span (CLS) 和Replicative life span (RLS) 3
1.5 Mother enrichment program (MEP) 4
1.6 蓮心 (Plumula Nelumbinis ; PN) 4
1.6.1抗氧化活性 4
1.6.2抗高血壓活性 4
1.6.3抗氣喘活性 5
1.6.4抗冠狀動脈狹窄 (Restenosis) 的活性 5
1.6.5抑制神經退化性疾病的活性 5
1.6.6抗糖尿病的活性 5
1.6.7抑制自體免疫疾病的活性 5
1.6.8抗心律不整的活性 6
1.6.9抗阿茲海默症的活性 6
1.6.10抗癌活性 6
1.6.11保肝活性 6
1.6.12抗發炎活性 7
1.6.13抗老化活性 7
1.7 卡路里限制 (Calorie restriction ; CR) 7
1.8 Silent Information Regulator2 (SIR2) 8
1.9 Sirtuin1 (SIRT1) 9
1.10 Target of rapamycin (TOR) 9
第二章實驗材料與方法 11
2.1.1藥品 11
2.1.2抗體資料表 11
2.1.3酵母菌株 11
2.2酵母菌基因型資料表 11
2.3實驗方法 12
2.3.1 酵母菌培養 12
2.3.2 Yeast transformation 12
2.3.3 Liquid aging assay 13
2.3.4 Replicative life span analysis 13
2.3.5 Yeast TCA whole cell extracts 14
2.3.6 Western blot 14
2.3.7 Calculation of Intracellular NAD+ Content 15
2.3.8 SIRT1 in vitro activity assay 15
第三章 結果 16
3.1 蓮心酒萃物在MEP analysis中增加酵母菌壽命 16
3.2 蓮心酒萃物延長酵母菌的Replicative life span (RLS) 16
3.3 蓮心酒萃物經由Sir2-dependent路徑延長酵母菌RLS 17
3.4 蓮心酒萃物經由Tor-independent的路徑延長酵母菌RLS 18
3.5 蓮心酒萃物無法提升Sir2蛋白質表現量 18
3.6 蓮心酒萃物無法提升Pnc1蛋白質表現量 19
3.7 蓮心酒萃物提高SIRT1活性 19
3.7 蓮心酒萃物提高酵母菌NAD+濃度 19
3.8 PN6在MEP analysis中增加酵母菌壽命 20
3.9 PN6增加酵母菌RLS 21
3.10 PN6經由Sir2-dependent路徑延長酵母菌RLS 21
3.11 PN6經由TOR-independent路徑延長酵母菌RLS 21
3.12 PN6-A增加酵母菌RLS 22
3.13 PN6-A經由Sir2-dependent路徑延長酵母菌RLS 22
3.14 PN6-A經由TOR-independent路徑延長酵母菌RLS 23
3.15 PN6-A無法提高Sir2蛋白質表現量 23
3.16 PN6-A無法提升Pnc1蛋白質表現量 23
3.17 PN6-A提高SIRT1活性 24
3.18 PN6-A無法提高酵母菌NAD+濃度 24
第四章 結果與討論 25
圖表 28
參考文獻 60



圖目錄
附圖一. Damage accumulation in yeast ageing. 28
Fig. 1 Plumula Nelumbinis extract increases the viability of MEP strains in MEP analysis. 31
Fig. 2 Various concentrations of Plumula Nelumbinis extract increases the viability of MEP strains in MEP analysis. 32
Fig. 3 Various concentrations of Plumula Nelumbinis extract on replicative life span in Saccharomyces cerevisiae. 33
Fig. 4 Plumula Nelumbinis extract extends replicative life span via Sir2-dependent 34
pathway in Saccharomyces cerevisiae. 34
Fig. 5 Plumula Nelumbinis extract extends replicative life span via TOR-independent pathway in Saccharomyces cerevisiae. 35
Fig. 6 The Sir2 protein levels didn’t change following the treatment of Plumula Nelumbinis extract. 36
Fig. 7 The Pnc1 protein levels didn’t change following the treatment of Plumula Nelumbinis extract. 37
Fig. 8 Plumula Nelumbinis extract increases the activity of SIRT1. 38
Fig. 9 Plumula Nelumbinis extract augments the concentration of NAD+. 39
Fig. 10 Plumula Nelumbinis ethyl acetate layer increases the viability of MEP strains in MEP analysis. 40
Fig. 11 Compounds from the ethyl acetate layer of Plumula Nelumbinis. 43
Fig. 12 MEP assay of the pure compounds from Plumula Nelumbinis ethyl acetate extract. 47
Fig. 13 PN6 extends replicative life span in Saccharomyces cerevisiae. 48
Fig. 14 PN6 extends replicative life span via Sir2-dependent pathway in Saccharomyces cerevisiae. 49
Fig. 15 PN6 extends replicative life span via TOR-independent pathway in Saccharomyces cerevisiae. 50
Fig. 16 PN6-A extends replicative life span in Saccharomyces cerevisiae. 51
Fig. 17 Various concentrations of PN6-A on replicative life span in Saccharomyces cerevisiae. 52
Fig. 18 PN6-A extends replicative life span via Sir2-dependent pathway in Saccharomyces cerevisiae. 53
Fig. 19 PN6-A extends replicative life span via TOR-independent pathway in Saccharomyces cerevisiae. 54
Fig. 20 The Sir2 protein levels didn’t change following the treatment of PN6-A. 55
Fig. 21 The Pnc1 protein levels didn’t change following the treatment of PN6-A. 56
Fig. 22 PN6-A increases the activity of SIRT1. 57
Fig. 23 PN6-A can not augment the concentration of NAD+. 58
Fig. 24 Pathways by Plumula Nelumbinis extract and PN6-A extend the life span of yeast. 59

表目錄
Table 1 抗體資料表 11
Table 2 酵母菌株基因型資料表 11
Table 3. List of compounds isolated from Plumula Nelumbinis 29
Table 4. The structure of PN6 and PN6-A 30
Ajami, M., Pazoki-Toroudi, H., Amani, H., Nabavi, S.F., Braidy, N., Vacca, R.A., Atanasov, A.G., Mocan, A., and Nabavi, S.M. (2017). Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neuroscience and biobehavioral reviews 73, 39-47.
Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O., and Sinclair, D.A. (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181-185.
Armanios, M., Alder, J.K., Parry, E.M., Karim, B., Strong, M.A., and Greider, C.W. (2009). Short telomeres are sufficient to cause the degenerative defects associated with aging. American journal of human genetics 85, 823-832.
Barzilai, N., Huffman, D.M., Muzumdar, R.H., and Bartke, A. (2012). The critical role of metabolic pathways in aging. Diabetes 61, 1315-1322.
Blasco, M.A. (2007). Telomere length, stem cells and aging. Nature chemical biology 3, 640-649.
Boonekamp, J.J., Simons, M.J., Hemerik, L., and Verhulst, S. (2013). Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging cell 12, 330-332.
Burtner, C.R., and Kennedy, B.K. (2010). Progeria syndromes and ageing: what is the connection? Nature reviews molecular cell biology 11, 567-578.
Burtner, C.R., Murakami, C.J., Kennedy, B.K., and Kaeberlein, M. (2009). A molecular mechanism of chronological aging in yeast. Cell cycle (Georgetown, Tex) 8, 1256-1270.
Cao, Y., Yan, Z., Zhou, T., and Wang, G. (2017). SIRT1 regulates cognitive performance and ability of learning and memory in diabetic and nondiabetic models. Journal of diabetes research 2017, 7121827.
Cao, Y., Zheng, L., Liu, S., Peng, Z., and Zhang, S. (2014). Total flavonoids from Plumula Nelumbinis suppress angiotensin II-induced fractalkine production by inhibiting the ROS/NF-kappaB pathway in human umbilical vein endothelial cells. Experimental and therapeutic medicine 7, 1187-1192.
Chen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W., and Guarente, L. (2008). Tissue-specific regulation of SIRT1 by calorie restriction. Genes & development 22, 1753-1757.
Colman, I., Murray, J., Abbott, R.A., Maughan, B., Kuh, D., Croudace, T.J., and Jones, P.B. (2009). Outcomes of conduct problems in adolescence: 40 year follow-up of national cohort. BMJ (Clinical research ed) 338, a2981.
Defossez, P.A., Prusty, R., Kaeberlein, M., Lin, S.J., Ferrigno, P., Silver, P.A., Keil, R.L., and Guarente, L. (1999). Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Molecular cell 3, 447-455.
Dogan, S., Johannsen, A.C., Grande, J.P., and Cleary, M.P. (2011). Effects of intermittent and chronic calorie restriction on mammalian target of rapamycin (mTOR) and IGF-I signaling pathways in mammary fat pad tissues and mammary tumors. Nutrition and cancer 63, 389-401.
Fabrizio, P., and Longo, V.D. (2007). The chronological life span of Saccharomyces cerevisiae. Methods in molecular biology (Clifton, NJ) 371, 89-95.
Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O'Connor, M.J. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. The New England journal of medicine 361, 123-134.
Fontana, L., Partridge, L., and Longo, V.D. (2010). Extending healthy life span--from yeast to humans. Science (New York, NY) 328, 321-326.
Foster, K.G., and Fingar, D.C. (2010). Mammalian Target of Rapamycin (mTOR): Conducting the Cellular Signaling Symphony. The Journal of biological chemistry 285, 14071-14077.
Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J.M., Bucci, G., Dobreva, M., Matti, V., Beausejour, C.M. (2012). Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature cell biology 14, 355-365.
Gems, D., and Doonan, R. (2009). Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell cycle (Georgetown, Tex) 8, 1681-1687.
Gu, D.F., Li, X.L., Qi, Z.P., Shi, S.S., Hu, M.Q., Liu, D.M., She, C.B., Lv, Y.J., Li, B.X., and Yang, B.F. (2009). Blockade of HERG K+ channel by isoquinoline alkaloid neferine in the stable transfected HEK293 cells. Naunyn-Schmiedeberg's archives of pharmacology 380, 143-151.
Guan, G., Han, H., Yang, Y., Jin, Y., Wang, X., and Liu, X. (2014). Neferine prevented hyperglycemia-induced endothelial cell apoptosis through suppressing ROS/Akt/NF-kappaB signal. Endocrine 47, 764-771.
Guarente, L. (2006). Sirtuins as potential targets for metabolic syndrome. Nature 444, 868-874.
Hassa, P.O., and Hottiger, M.O. (2008). The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Frontiers in bioscience : a journal and virtual library 13, 3046-3082.
Heilbronn, L.K., and Ravussin, E. (2003). Calorie restriction and aging: review of the literature and implications for studies in humans. The American journal of clinical nutrition 78, 361-369.
Herranz, D., and Serrano, M. (2010). SIRT1: recent lessons from mouse models. Nature reviews Cancer 10, 819-823.
Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196.
Jin, K. (2010). Modern biological theories of aging. Aging and disease 1, 72-74.
Jun, M.Y., Karki, R., Paudel, K.R., Sharma, B.R., Adhikari, D., and Kim, D.W. (2016). Alkaloid rich fraction from Nelumbo nucifera targets VSMC proliferation and migration to suppress restenosis in balloon-injured rat carotid artery. Atherosclerosis 248, 179-189.
Jung, H.A., Jin, S.E., Choi, R.J., Kim, D.H., Kim, Y.S., Ryu, J.H., Kim, D.W., Son, Y.K., Park, J.J., and Choi, J.S. (2010). Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life sciences 87, 420-430.
Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513-519.
Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biology 2, 1-12.
Kaeberlein, M., and Powers, R.W., 3rd (2007). Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing research reviews, 128-140.
Kapahi, P., Kaberlein, M., and Hansen, M. (2016). Dietary restriction and lifespan: Lessons from invertebrate models. Ageing research reviews, 3-14.
Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512.
Koga, H., Kaushik, S., and Cuervo, A.M. (2011). Protein homeostasis and aging: The importance of exquisite quality control. Ageing research reviews, 205-215.
Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science (New York, NY) 309, 481-484.
López-Otín, C. (2013). The hallmarks of aging. Cell 153, 1194-1217.
Li, J., Bonkowski, M.S., Moniot, S., Zhang, D., Hubbard, B.P., Ling, A.J., Rajman, L.A., Qin, B., Lou, Z., Gorbunova, V. (2017). A conserved NAD(+) binding pocket that regulates protein-protein interactions during aging. Science (New York, NY) 355, 1312-1317.
Lin, Y.R., Kim, K., Yang, Y., Ivessa, A., Sadoshima, J., and Park, Y. (2011). Regulation of longevity by regulator of G-protein signaling protein, Loco. Aging cell 10, 438-447.
Lindstrom, D.L., and Gottschling, D.E. (2009). The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183, 413-422, 411si-413si.
Loewith, R., and Hall, M.N. (2011). Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control. Genetics 189, 1177-1201.
Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast (Chichester, England) 14, 953-961.
Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217.
Lu, S.P., and Lin, S.J. (2010). Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. Biochimica et Biophysica Acta 1804, 1567-1575.
Mair, W., and Dillin, A. (2008). Aging and survival: the genetics of life span extension by dietary restriction. Annual review of biochemistry 77, 727-754.
Masoro, E.J. (2000). Caloric restriction and aging: an update. Experimental gerontology 35, 299-305.
Mendes, K.L., Lelis, D.F., and Santos, S.H.S. (2017). Nuclear sirtuins and inflammatory signaling pathways. Cytokine & growth factor reviews 38, 98-105.
Mills, K.F., Yoshida, S., Stein, L.R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M.E., Apte, R.S., Uchida, K. (2016). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell metabolism 24, 795-806.
Mortimer, R.K., and Johnston, J.R. (1959). Life span of individual yeast cells. Nature 183, 1751-1752.
Moskalev, A.A., Shaposhnikov, M.V., Plyusnina, E.N., Zhavoronkov, A., Budovsky, A., Yanai, H., and Fraifeld, V.E. (2013). The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing research reviews 12, 661-684.
Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., Mottis, A., Jo, Y.S., Viswanathan, M., Schoonjans, K. (2013). The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441.
Niu, C.H., Wang, Y., Liu, J.D., Wang, J.L., and Xiao, J.H. (2013). Protective effects of neferine on amiodarone-induced pulmonary fibrosis in mice. European journal of pharmacology 714, 112-119.
Olovnikov, A.M. (1996). Telomeres, telomerase, and aging: origin of the theory. Experimental gerontology 31, 443-448.
Ota, H., Akishita, M., Eto, M., Iijima, K., Kaneki, M., and Ouchi, Y. (2007). Sirt1 modulates premature senescence-like phenotype in human endothelial cells. Journal of molecular and cellular cardiology 43, 571-579.
Paudel, K.R., and Panth, N. (2015). Phytochemical profile and biological activity of nelumbo nucifera. Evidence-based complementary and alternative medicine : eCAM 2015, 789124.
Payne, B.A.I., and Chinnery, P.F. (2015). Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochimica et biophysica acta 1847, 1347-1353.
Perez, V.I., Van Remmen, H., Bokov, A., Epstein, C.J., Vijg, J., and Richardson, A. (2009). The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging cell 8, 73-75.
Poornima, P., Weng, C.F., and Padma, V.V. (2014). Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. BioFactors (Oxford, England) 40, 121-131.
Powers, E.T., Morimoto, R.I., Dillin, A., Kelly, J.W., and Balch, W.E. (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annual review of biochemistry 78, 959-991.
Reinke, A., Anderson, S., McCaffery, J.M., Yates, J., 3rd, Aronova, S., Chu, S., Fairclough, S., Iverson, C., Wedaman, K.P., and Powers, T. (2004). TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. The journal of biological chemistry 279, 14752-14762.
Ristow, M., and Schmeisser, S. (2011). Extending life span by increasing oxidative stress. Free radical biology & medicine 51, 327-336.
Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proceedings of the national academy of sciences of the United States of America 101, 15998-16003.
Rudolph, K.L., Chang, S., Lee, H.W., Blasco, M., Gottlieb, G.J., Greider, C., and DePinho, R.A. (1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701-712.
Satoh, A., Brace, C.S., Rensing, N., Clifton, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell metabolism 18, 416-430.
Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91, 1033-1042.
Smith, B.M., Weaver, F.M., and Ullrich, P.M. (2007). Prevalence of depression diagnoses and use of antidepressant medications by veterans with spinal cord injury. American journal of physical medicine & rehabilitation 86, 662-671.
Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science (New York, NY) 273, 59-63.
Steinkraus, K.A., Kaeberlein, M., and Kennedy, B.K. (2008). Replicative aging in yeast: the means to the end. Annual review of cell and developmental biology 24, 29-54.
Tomas-Loba, A., Flores, I., Fernandez-Marcos, P.J., Cayuela, M.L., Maraver, A., Tejera, A., Borras, C., Matheu, A., Klatt, P., Flores, J.M. (2008). Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135, 609-622.
Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., Bohlooly, Y.M., Gidlof, S., Oldfors, A., Wibom, R. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423.
Tucci, P. (2012). Caloric restriction: is mammalian life extension linked to p53? Aging 4, 525-534.
Vermulst, M., Wanagat, J., Kujoth, G.C., Bielas, J.H., Rabinovitch, P.S., Prolla, T.A., and Loeb, L.A. (2008). DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nature genetics 40, 392-394.
Wedaman, K.P., Reinke, A., Anderson, S., Yates, J., 3rd, McCaffery, J.M., and Powers, T. (2003). Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Molecular biology of the cell 14, 1204-1220.
Weng, T.C., Shen, C.C., Chiu, Y.T., Lin, Y.L., Kuo, C.D., and Huang, Y.T. (2009). Inhibitory effects of armepavine against hepatic fibrosis in rats. Journal of biomedical science 16, 78.
Wickens, A.P. (2001). Ageing and the free radical theory. Respiration physiology 128, 379-391.
Wong, V.K., Wu, A.G., Wang, J.R., Liu, L., and Law, B.Y. (2015). Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules (Basel, Switzerland) 20, 3496-3514.
Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484.
Xu, F., Zhang, Q., Zhang, K., Xie, W., and Grunstein, M. (2007). Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Molecular cell 27, 890-900.
Zhang, M., and Ying, W. (2018). NAD+ deficiency is a common central pathological factor of a number of diseases and aging: Mechanisms and therapeutic implications. Antioxidants & redox signaling.
Zhang, X., Wang, X., Wu, T., Li, B., Liu, T., Wang, R., Liu, Q., Liu, Z., Gong, Y., and Shao, C. (2015). Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Scientific reports 5, 12579.
Zhou, M., Jiang, M., Ying, X., Cui, Q., Han, Y., Hou, Y., Gao, J., Bai, G., and Luo, G. (2013). Identification and comparison of anti-inflammatory ingredients from different organs of Lotus nelumbo by UPLC/Q-TOF and PCA coupled with a NF-kappaB reporter gene assay. PloS one 8, e81971.
何怡萱,蓮心子、巴西洋菇、(-)-epicatechin及proanthocyanidin A2之延緩線蟲老化功效,台灣大學食品科技研究所學位論文,2009。
何雅嵐,蓮子心與芝麻粕之抗氧化活性及其延長線蟲壽命功效之研究,台灣大學食品科技研究所學位論文,2007。
吳孟穎,蓮子心延緩線蟲老化之有效成分探討,台灣大學食品科技研究所學位論文,2011。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊