跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈威廷
研究生(外文):Shen, Wei-Ting
論文名稱:以格位傳遞模式與細胞自動機為基礎之巨微觀混合車流模式
論文名稱(外文):A Macro-Micro Mixed Traffic Flow Models based on Cell Transmission Models and Cellular Automaton
指導教授:邱裕鈞邱裕鈞引用關係
指導教授(外文):Chiou, Yu-Chiun
口試委員:藍武王許志誠邱裕鈞
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立交通大學
系所名稱:運輸與物流管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:格位傳遞模式細胞自動機巨微觀轉換混合車流
外文關鍵詞:Cell transmission modelcellular automatonmacro-micro traffic flow modelmixed traffic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:1
巨觀車流模式係計算道路上整體車流之流量、密度與速率間關係,運作優點在於模擬效率高;微觀車流模式則處理個別車輛間較為細緻之車流行為,針對車間距、速差等刺激項對應做出加減速反應,優點在於資料準確度高,當各取其優點整合二種模式進行模擬運作時,須面臨效率與精確度之權衡(trade-off)。本研究以市區道路汽車與機車混合車流為背景,以謝志偉(2010)所提出混合車流格位傳遞模式(Mixed Traffic Cell Transmission Models,MCTM)為基礎,模擬車隊在路段格位間整體車流傳遞之行為,降低模擬時間;再以Lan et al.(2009、2010)細胞自動機(Cellular Automaton,CA)以及提出變換車道決策之概念為基礎,模擬車隊於鄰近路口混合併行與變換車道等行為。為使前述兩模式能整合運作,設計巨觀與微觀模式資訊傳遞轉換介面,結合兩模式之優點並考慮混合車流特性構建巨微觀混合車流模式。
本研究進一步蒐集市區道路混合車流資料,取得實驗路段內所有車輛軌跡及統計各格位內於各時階之車輛數後,依巨微觀模式佔道路比例不同進行情境設定,以模擬時間(CPU time)及對稱平均絕對百分比誤差(SMAPE)驗證模式運作之效率和精確度,並探討道路上各介面位置之巨微觀混合車流模式模擬效能,以尋求最適介面。研究結果顯示,巨觀模式有助於降低模擬時間提升效率、微觀模式對於精確度亦有幫助,且在時間效率與精確度兩相權衡下,最適介面位置以距離路口30至60公尺處之總模擬效能最佳,於車流受干擾前應轉換為微觀模式處理。
The macroscopic traffic flow models which account for the flow rate, density or speed of groups of vehicles on the roads, are advantageous to its high efficiency. On the contrary, the microscopic traffic flow models deal with the stimulation terms to spacing or relative speed between individual vehicles and respond to its acceleration or deceleration. The advantage of them lie in describing detailed vehicle behaviors and high accuracy. Therefore, it is necessary to be confronted with a trade-off between efficiency and accuracy when conducting mixed traffic flow models simulation. This study takes the prevailing mixed traffic of cars and motorcycles on urban streets as the background. Firstly, based on the mixed traffic cell transmission models (MCTM), proposed by C.W. Hsieh (2010), to simulate platoons of vehicles with traffic flow transference within segment cells to reduce simulation time. Secondly, based on the cellular automaton and microscopic lane changing principles in mixed traffic, proposed by Lan et al.(2009、2010), to simulate platoons of vehicles with parallel driving and lane changing behaviors in close proximity to the intersection. In order to make these two models stated above integrate properly, this study develops a macro-micro traffic flow models with a transmission interface design, which combines advantages over both models and takes characteristics of mixed traffic into consideration.
Moreover, real data of mixed traffic on urban streets is collected. To obtain all the vehicle trajectories in the experimental segment and calculate numbers of vehicles in each cell at each time step through analyzing them. The proposed model in different scenarios is assumed and divided into seven kinds of macro-micro proportions. The efficiency index is measured by CPU time and accuracy index is by SMAPE values to validate the proposed model. This study puts emphasis on the simulation effectiveness of interfaces in different positions of the segment and tries to find out the best one. The results demonstrate that the macroscopic traffic flow models is conductive to reduce the simulation time and improve efficiency. The microscopic traffic flow models make for accuracy. Under a balanced of efficiency and accuracy, the best position of the interface measured by simulation effectiveness is thirty to sixty meters apart from the intersection. It is supposed to transfer the model from macroscopic to microscopic before the traffic flow is interrupted.
摘要 i
Abstract ii
誌謝 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程 3
1.4 研究內容 4
第二章 文獻回顧 5
2.1 巨觀車流模式 5
2.2 微觀車流模式 9
2.3 巨微觀轉換介面 15
2.4 小結 22
第三章 模式構建 26
3.1 混合車流現象觀測 26
3.2 巨觀模式 27
3.2 巨微觀轉換模式 31
3.2.1 巨觀模式轉換微觀模式 31
3.2.2 速度計算 33
3.3 微觀模式 34
3.3.1 車輛更新原則 35
3.3.2 變換車道規則 36
3.4 模式流程 37
第四章 模式驗證 40
4.1 簡例設計 40
4.1.1 實驗參數設定 40
4.1.2 模式特性分析 42
4.2 實例測試 49
4.2.1 實驗路口選擇 49
4.2.2 車流資料處理及分析 49
4.2.3 模式驗證 51
第五章 結論與建議 65
5.1結論 65
5.2 建議 66
參考文獻 67
1. 卓訓榮、羅仕京(2002),「從Boltzmann微觀車流模式推導巨觀車流理論模式之研究」,行政院國家科學委員會專題研究計畫成果報告。
2. 謝志偉(2010),「混合車流格位傳遞模式之建立與驗證」,國立交通大學交通運輸研究所,碩士論文。
3. 孫晟安(2013),「建立巨微觀機車混合車流模式」,國立交通大學交通運輸研究所,碩士論文。
4. Aw, A., Klar, A., Materne, T. and Rascle, M. (2002) “Derivation of Continuum Traffic Flow Models from Microscopic Follow-the-Leader Models,” SIAM Journal on Applied Mathematics, 63(1), pp.259–278.
5. Bourrel, E. and Lesort, J. B. (2003) “Mixing micro and macro representations of traffic flow a hybrid model based on the LWR theory,” Transportation Research Record:Journal of the Transportation Research Board, 1852, pp.193–200.
6. Burghout, W., Haris, N. K. and Ingmar, A. (2005) “Hybrid Mesoscopic-Microscopic Traffic Simulation,” Transportation Research Record: Journal of the Transportation Research Board, 1934, pp.218–225.
7. Daganzo, C. F. (1994) “The cell transmission model:A dynamic representation of highway traffic consistent with the hydrodynamic theory,” Transportation Research Part B: Methodological, 28, pp.269–287.
8. Daganzo, C. F. (1995) “The cell transmission model, part II:Network traffic,” Transportation Research Part B: Methodological, 29, pp.79–93.
9. Daganzo, C. F. (2006) “In traffic flow, cellular automata = kinematic waves,” Transportation Research Part B: Methodological, 40, pp.396–403.
10. Helbing, D. (1998) “From Microscopic to Macroscopic Traffic Models,” A Perspective Look at Nonlinear Media, pp. 122–139.
11. Helbing, D., Hennecke, A., Shvetsov, V. and Treiber M. (2002) “Micro- and Macro-Simulation of Freeway Traffic,” Mathematical and Computer Modelling, Volume 35, Issues 5–6, pp.517–547.
12. Hennecke, A., Treiber, M. and Helbing, D. (2000) “Macroscopic Simulation of Open Systems and Micro-Macro Link,” II Institute for Theoretical Physics, University Stuttgart, Pfaffenwaldring 57, D-70756 Stuttgart, Germany.
13. Lan, W. L. and Chang, C. W. (2005) “Inhomogeneous cellular automata modeling for mixed traffic with cars and motorcycles,” Journal of Advanced Transportation, Vol 39, Issue 3, pp.323–349.
14. Lan, W. L. and Hsu, C. C. (2005)“Using cellular automata to explore spatio-temporal traffic patterns,”Proceedings, 10th International Conference of Hong Kong Society for Transportation Studies, pp.210–219.
15. Lan, W. L., Chiou, Y. C., Lin, Z. S. and Hsu, C. C. (2009) “A refined cellular automaton model to rectify impractical vehicular movement behavior,” Physica A, 388, pp.3917–3930.
16. Lan, W. L., Chiou, Y. C., Lin, Z. S. and Hsu, C. C. (2010) “Cellular automaton simulations for mixed traffic with erratic motorcycles' behaviours,” Physica A, 389, pp.2077–2089.
17. Leclercq, L. (2007) “Hybrid approaches to the solutions of the Lighthill-Whitham- Richards model,” Transportation Research Part B: Methodological, 41, pp.701–709.
18. Leclercq, L. and Moutari, S. (2007) “Hybridization of a class of second order models of traffic flow,” Simulation Modeling Practice and Theory, 15, pp.918–934.
19. Lee, T. C., Polak, J. W. and Bell, M. G. H. (2009) “New Approach to Modeling Mixed Traffic Containing Motorcycles in Urban Areas,” Transportation Research Record:Journal of the Transportation Research Board, 2140, pp.195–205.
20. Lee, T. C., Polak, J. W., Bell, M. G. H. and Wigan, M. R. (2012) “The kinematic features of motorcycles in congested urban networks,” Elsevier:Accident Analysis and Prevention, 49, pp.203–211.
21. Long, J., Gao, Z., Zhao, X., Lian, A. and Orenstein, P. (2008) “Urban traffic jam simulation based on the cell transmission model,” Networks and Spatial Economics, March 2011, Volume 11, Issue 1, pp.43–64.
22. Magne, L., Rabut, S. and Gabard, J. F. (2000) “Towards an hybrid macro-micro traffic flow simulation model,” INFORMS Salt Lake City String 2000 Conference– May 7–10.
23. Meng, J. P., Dai, S. Q., Dong, L. Y. and Zhang, J. F. (2007) “Cellular automaton model for mixed traffic flow with motorcycles,” Physica A, 380, pp.470–480.
24. Munoz, L., Sun, X., Horowitz, R. and Alvarez, L. (2003) “Traffic density estimation with the cell transmission model,” Proceeding of the American Control Conference, Denver Colorado, June4-6, pp.3750–3755.
25. Munoz, L., Sun, X., Sun, D., Gomes, G., Horowitz, R. (2004) “Methodological Calibration of the Cell Transmission Model,” Proceedings of the 2004 American Control Conference, Boston, Massachusetts June 30 - July 2, pp.798–803.
26. Moutari, S. and Rascle, M. (2007) “A Hybrid Lagrangian Model Based on the Aw–Rascle Traffic Flow Model,” SIAM Journal on Applied Mathematics, Volume 68, Issue 2, pp.413–436.
27. Nagel, K. and Schreckenberg, M. (1992) “A cellular automaton model for freeway traffic,” J. Phy. I France 2, pp.2221–2229.
28. Powell, M. (2000) “A model to represent motorcycle behaviour at signalized intersections incorporating an amended first order macroscopic approach,” Transportation Research Part A: Policy and Practice, Volume 34, Issue 7, pp.497–514.
29. Wong, G. C. K. and Wong, S. C. (2002) “A multi-class traffic flow model an extension of LWR model with heterogeneous drivers.” Transportation Research Part A: Policy and Practice, 36, pp.827–841.
30. Zhang, H. M. and Jin, W. L. (2002) “A kinematic wave traffic flow model for mixed traffic,” Transportation Research Record:Journal of the Transportation Research Board, 1802, pp.197–204.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top