跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖怡荏
研究生(外文):Liao, Yi-Jen
論文名稱:利用理論計算方法探討HNCC自由基和NO分子之反應機制與反應動力學
論文名稱(外文):Computational study on reaction mechanisms and kinetics for the reaction of Iminovinylidene readical with NO molecule
指導教授:陳輝龍陳輝龍引用關係
指導教授(外文):Chen, Hui-Lung
口試委員:林立錦陳欣聰
口試委員(外文):Lin, Lee-ginChen, Hsin-Tsung
口試日期:2014-06-20
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:57
中文關鍵詞:HCCN自由基
外文關鍵詞:iminovinylidene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
Iminovinylidene (HNCC) 自由基與一氧化氮的動力學反應機制,並探討多種可能的反應路徑,分別考慮了NO的N及O原子與HNCC的N及C原子碰撞反應的可能性。所有結構的位能和反應速率分別使用高階ab initio共軛的分子軌域與變化的TST及RRKM計算獲得。反應物、中間物、過渡狀態及產物的構型均使用B3LYP/6-311++G(3df,2p)層級計算來得到最佳化並藉由 CCSD(T)/aug-cc-PVQZ//B3LYP/6-311++G(3df,2p)方法獲得精確的單點能量。從計算結果指出HNCC + NO 最佳的反應途徑被預測為HNC+CNO (P8)產物,此產物是經由HNCC基的C原子與NO基的N原子頭對頭方式的加成反應所生成。為了更深入的探討計算結果,我們通常使用 Fukui functions與HSAB 理論尋求可能的解釋。除此之外,計算通常使用VariFlex code為反應速率常數,結果顯示當氬氣壓力為760 torr下所有速率係數,ktotal,可以用下列方程式來描述:ktotal = 6.433×10-11 T 0.100 exp(0.275 kcal mol-1/RT)且T = 298-3000 K, 單位為cm3 molecule-1 s-1。
The mechanism and kinetic for reaction of the iminovinylidene (HNCC) radical with the nitric oxide is investigated via considering the possible channels of the N and O atoms of NO attacking the N and C atoms of the HNCC based on high level ab initio molecular orbital in conjunction with variational TST and RRKM calculations. The species involved have been optimized at the B3LYP/6-311++G(3df,2p) level and their single−point energies are refined by the CCSD(T)/aug-cc-PVQZ//B3LYP/6-311++G(3df,2p) method. The calculated results of potential energy surfaces indicated that energetically the most favorable channel for the HNCC + NO reaction was predicted to be the formation of HNC+CNO (P8) product via the addition reaction of the C atom of HNCC radical and the N atom of NO with the head to head
orientation. To rationalize the scenario of the calculated results, we also employ the Fukui functions and HSAB theory to seek for the possible explanation. In addition, the reaction rate constants were calculated using VariFlex code, and the results shows total rate coefficient, ktotal, at Ar pressure 760 torr can be represented with an equation: ktotal = 6.433×10-11 T 0.100 exp(0.275 kcal mol-1/RT) at T = 298-3000 K, in units of cm3 molecule-1 s-1.

目錄
摘要 1
Abstract 2
第一章 緒論 8
第二章 理論計算與方法 12
2-1理論計算 12
2-2計算方法原理與使用 14
2-2.1半經驗(Semi-empirical)法 14
2-2.2全初始(Ab initio)法 15
2-2.3 分子力學理論(Molecular mechanics,MM) 16
2-2.4 密度泛函理論( Density Functional Theory, DFT ) 18
2-3 量子化學(Quantum chemistry) 21
2-4 HF(Hartree-Fock)方程式 22
2-5 B3LYP理論 23
2-6 基底函數組 (Basis set) 24
2-6.1 擴散函數(Diffuse function) 26
2-6.2 極化函數(Polarization function) 27
第三章 計算方法 28
第四章 結果與討論 30
第五章 結論 53
參考文獻 54
(1)Aikin, A. C., Phys. Chem. Earth. (C), 2001, 26, 527
(2)Zipf, E. C.; Prasad, S. S. Science, 1998, 9, 211.
(3)Yung Y. L.; Allen M.; Pinto J . P. Astrophys. J . Suppl. Ser. 1984, 55, 465.
(4)Yung Y. L . Icarus, 1987, 72, 468.
(5)Morris V. R.; Bhatia S. C.; Stelson A. W. Hall, J. H. Jr. Energy Fuels, 1991, 5, 126.
(6)Balucani, N.; Alagia, M.; Cartechini, L.; Casavecchia,P.; Volpi, G. G.; Sato, K.; Takayanagi, T.; Kurosaki Y. J. Am. Chem. Soc., 2010, 122, 4443.
(7)Bernheim, R. A.; Kempf, R. J.; Humer, P. W.; Skell, P. S. J. Chem.Phys. 1964,41, 1156.
(8)Wasserman, E.; Yager, W. A.; Kuck, V. J. Chem. Phys. Lett. 1970, 7, 409.
(9)Dendramis, A.; Leroi, G. E. J. Chem. Phys. 1977, 66, 4334.
(10)Saito, S.; Endo, Y.; Hirota, E. J. Chem. Phys. 1984, 80, 1427.
(11)Brown, F. X.; Saito, S.; Yamamoto, S. J. Mol. Spectrosc. 1990, 143, 203.
(12)Morter, C. L.; Farhat, S. K.; Curl, R. F. Chem. Phys. Lett. 1993, 207, 153.
(13)McCarthy, M. C.; Gottlieb, C. A.; Cooksy, A. L.; Thaddeus, P. J. Chem. Phys.1995, 103, 7779.
(14)Sun, F.; Kosterev, A.; Scott, G.; Litosh, V.; Curl, R. F. J. Chem. Phys. 1998, 109,8851.
(15)Han, J.-X.; Hung, P. Y.; DeSain, J.; Jones, W. E.; Curl, R. F. J. Mol. Spectrosc.1999, 198, 421.
(16)Allen, M. D.; Evenson, K. M.; Brown, J. M. J. Mol. Spectrosc. 2001, 209, 143.
(17)Hung, P. Y.; Sun, F.; Hunt, N. T.; Burns, L. A.; Curl, R. F. J. Chem. Phys. 2001,115, 9331.
(18)Ladizhansky, V.; Veshtort, M.; Griffin, R. G. J. Magn. Reson. 2002, 154, 317.
(19)Zandler, M. E.; Goddard, J. D.; Schaefer, H. F., III. J. Am. Chem. Soc. 1979, 101,1072.
(20)Kim, K. S.; Schaefer, H. F., III; Radom, L.; Pople, J. A.; Binkley, J. S. J. Am.Chem. Soc. 1983, 105, 4148.
(21)Rice, J. E.; Schaefer, H. F., III. J. Chem. Phys. 1987, 86, 7051.
(22)Seidl, E. T.; Schaefer, H. F., III. J. Chem. Phys. 1992, 96, 4449.
(23)Aoki, K.; Ikuta, S.; Nomura, O. J. Chem. Phys. 1993, 99, 3809.
(24)Kellogg, C. B.; Galbraith, J. M.; Fowler, J. E.; Schaefer, H. F., III. J. Chem. Phys.1994, 101, 430.
(25)Francisco, J. S. Chem. Phys. Lett. 1994, 230, 372.
(26)Goldberg, N.; Fiedler, A.; Schwarz, H. J. Phys. Chem. 1995, 99, 15327.
(27)Nimlos, M.; Davico, G.; Wenthold, P.; Lineberger, W.; Blanksby, S.; Hadad, C.;Peterson, G.; Ellison, G. J. Chem. Phys. 2002, 117, 4323.
(28)Poutsma, J. C.; Upshaw, S. D.; Squires, R. R.; Wenthold, P. G. J. Phys. Chem. A 2002, 106, 1067.
(29)Koput, J. J. Phys. Chem. A 2002, 106, 6183.
(30)Koput, J. J. Phys. Chem. A 2003, 107, 4717.
(31)Adamson, J.D. ;Curl, R.F. ;Glass, G.P.J. Phys. Chem. A 1997, 101, 864.
(32)Kalcher, J. Chem. Phys. Lett. 2005, 403, 146.
(33)Park, S.-W.; Lee, S., Bull. Korean chem. Soc. 2002, 23, 1553.
(34)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford,S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Gill, P. M. W.; Challacombe, M.; Johnson, B.; Chen, W.;Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision D.02; Gaussian:Wallingford CT, 2004.
(35)(a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (b) Becke, A. D. J. Chem. Phys.1992, 97, 9173. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(36)Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
(37)Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1989, 90, 2154.
(38)Lee, T. J.; Scuseria, G. In Quantum-mechanical Electronic Structure Calculations with Chemical Accuracy; Langhoff, S. F., Ed.; Kluwer: Dordrecht,Netherlands, 1995.
(39)Knowles, P. J.; Hampel, C.; Werner, H.-J. J. Chem. Phys. 1993, 99, 5219.
(40)Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D. M. Robertson, S.H. VARIFLEX, Version 1.00, Argonne National Laboratory, Argonne, IL, 1999.
(41)(a) Klippenstein, S. J.; Marcus, R. A. J. Chem. Phys. 1987, 87, 3410. (b)Klippenstein, S. J. Chem. Phys. Letts. 1990, 170, 71. (c) Klippenstein, S. J. J.Chem. Phys. 1992, 96, 367. (d) Klippenstein, S. J. J. Phys. Chem. 1994, 98,11459.
(42)(a) Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. 1984, 110, 230. (b)Wardlaw, D. M.; Marcus, R. A. J. Chem. Phys. 1985, 83, 3462.
(43)Chen, H-L.; Chao, W-C. J. Phys. Chem. A 2011, 115, 1133.
(44)Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.
(45)Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.
(46)Nguyen, M. T.; Chandra, A. K.; Sakai, S.; Morokuma, K. J. Org. Chem. 1999,64, 65.
(47)Nguyen, L. T.; Proft, F. D.; Chandra, A. K.; Uchimaru, T.; Nguyen, M. T.;Geerlings, P. J. Org. Chem. 2001, 66, 6096.
(48)Lopez, P.; Meńdez, F. Org. Lett. 2004, 6, 1781.
(49)Lin, Y.-l.; Lee, Y.-m.; Lim, C. J. Am. Chem. Soc. 2005, 127, 11336.
(50)Melin, J.; Ayers, P. W.; Ortiz, J. V. J. Phys. Chem. A 2007, 111, 10017.
(51)Sato, T.; Tokunaga, K.; Tanaka, K. J. Phys. Chem. A 2008, 112, 758.
(52)Estrada-Salas, R. E.; Valladares, A. A. J. Phys. Chem. A 2009, 113, 10299.
(53)Gazquez, J. L.; Meńdez, F. J. Phys. Chem. 1994, 98, 4591.
(54)Hippler, H.; Troe, J.; Wendelken, H. J. J. Chem. Phys. 1983, 78, 6709.
(55)Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific: Oxford, 1990.
(56)Golden, D. M.; Smith, G. P.; McEwen, A. B.; Yu, C. L.; Eiteneer, B.; Frenklach, M.; Vaghjiani, G. L.; Ravishankara, A. R.; Tully, F. P. J. Phys. Chem. 1998, 102,8598.

(57)Zhu, R. S.; Diau, E. G. W.; Lin, M. C.; Mebel, A. M. J. Phys. Chem. 2001, 105,11249.
(58)Zhu, R. S.; Lin, M. C. ChemPhysChem. 2004, 5, 1864.
(59)Zhu, R. S.; Lin, M. C. ChemPhysChem. 2005, 6, 1514.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top