跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佩珊
研究生(外文):Pei-shan Li
論文名稱:應用資料探勘與協同過濾技術於選修課程推薦之研究
論文名稱(外文):The Recommendation of Elective Courses Using Data Mining and Collaborative Filtering Techniques
指導教授:施學琦施學琦引用關係
指導教授(外文):Hsueh-Chi Shih
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:116
中文關鍵詞:課程推薦協同過濾法資料探勘
外文關鍵詞:Data MiningRecommender SystemCollaborative Filtering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在教育的領域中,學生就如同顧客一般,如何主動提供資訊,輔助學生們能適當且方便地選擇其所需的課程,是一個令許多學校困擾的問題。目前陸續有研究提出各種推薦系統以解決學生學習上的問題,但大多數皆應用於同一門課程中不同章節之間學習路徑的安排,相對於應用在跨課程之間的推薦研究較為缺乏。
本研究提出一個以資料探勘與協同過濾法為基礎之課程推薦方法,研究對象為某科技大學資管系四技部與二技部學生。首先將學生分為新生和舊生二類,針對新生,本研究採用「協同過濾法」,四技生以「一年級必修成績表現」,而二技生則以「學籍資料」定義為學生的偏好(preference),以K最近鄰居分類法找出與新生偏好最相似的群組之修課紀錄中,前N項被最多人選擇的課程於予推薦;舊生則採用資料探勘中的「序列型樣」,依學生先前的選課紀錄以及修課成績表現,推薦此學期適合的課程;再將序列推薦的結果與「關聯法則」結合,找出序列推薦課程的相關課程,提供學生個人化的選課推薦。
最後在推薦品質的衡量上,本研究採用F1-measure做為評估標準,並以二技部94學年入學學生以及四技部92學年入學學生之選課資料做為測試資料,以檢驗本研究之推薦結果。
In the field of education, students play the role of customer. How to actively offer information and assist them in choosing suitable elective courses are agonizing problems in many universities. Although various recommender systems have been proposed to solve these problems, many studies focus on the arrangement of the learning path between different chapters in the same course, such as e-learning, but only few studies for recommending different courses are proposed.
In this study, we proposed a methodology to provide personalized recommendations on elective courses based on Data Mining and Collaborative Filtering techniques. The research objects are the 4-year and 2-year technological program students in the Department of Information Management in a National University of Science and Technology. Firstly, students were classified into two groups: freshmen and seniors. Secondly, for freshmen, we used the Collaborative Filtering approach to find the top-N recommendation courses of each cluster of students. For seniors, according to students’ enrolling records and scores, we used the Sequential Patten approach to find the preferred sequential courses and then used the Association Rule approach to find the related courses based on the recommendation results of the Sequential Patten approach. Finally, we used the F1-measure to measures the quality of our recommendation results.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究範圍與限制 3
1.4 論文架構 4
第二章 文獻探討 6
2.1 資料探勘 6
2.1.1 資料探勘的定義 6
2.1.2 資料探勘的功能 7
2.2 推薦系統 9
2.2.1 內容導向過濾法(Content-Based Filtering) 9
2.2.2 協同過濾法(Collaborative Filtering;CF) 10
2.2.3 混合式過濾法(Hybrid Filtering ) 14
2.3 課程推薦之相關研究 15
第三章 研究方法 17
3.1 研究對象 18
3.2 資料收集階段 19
3.3 資料前處理階段 19
3.4 課程探勘階段 22
3.4.1 K最近鄰居導向協同過濾法 22
3.4.2 序列型樣 26
3.4.3 關聯法則 29
3.5 課程推薦階段 31
3.6 研究評估 36


第四章 實驗結果與分析 37
4.1 新生推薦 37
4.1.1 四技 37
4.1.2 二技 40
4.1.3 與其他方法的比較 43
4.2 舊生推薦 47
4.2.1 四技 47
4.2.2 二技 49
4.2.3 與其他方法的比較 50
第五章 結論 53
5.1 結論 53
5.2 研究貢獻 54
5.3 研究限制 54
5.4 未來研究方向 55
參考文獻 56
附錄一 新生各課程修課人數統計表 60
附錄二 新生各群組Top-N課程 62
附錄三 舊生各學年學期熱門課程 65
附錄四 四技序列型樣規則集 66
附錄五 二技序列型樣規則集 76
附錄六 四技關聯法則規則集 87
附錄七 二技關聯法則規則集 99
[1]丁一賢、陳牧言,2005,資料探勘,滄海書局,台中。
[2]陳垂足、賴春松和利益多,2002,“應用資料探勘技術發覺課程最適性選修之學生”,台灣網際網路研討會論文集,新竹,第353-358頁。
[3]陳宏仁,2007,運用循序樣式探勘技術於專業學程推薦之研究,私立靜宜大學資訊管理學研究所,碩士論文。
[4]楊淦淼,2002,設計與建立在多層式服務架構上的資料挖掘系統-以學生課程管理為例,私立逢甲大學資訊工程所,碩士論文。
[5]蔡旻璇,2003,序列樣式分析應用於課程規劃支援系統,私立靜宜大學資訊管理學研究所,碩士論文。
[6]Agrawal, R., Imielinski, T., and Swami, A., 1993, “Mining association rule between sets of items in large databases”, ACM International Conference on Management of Data, pp. 207-216
[7]Agrawal, R., and Srikant, R., 1994, “Fast algorithms for mining association rules in large databases”, Proceedings of the 20th International conference on Very Large Data Bases, pp. 487-499
[8]Agrawal, R., and Srikant, R., 1995, “Mining sequential patterns”, Proceedings of the 11th International Conference on Data Engineering, pp. 3-4.
[9]Adomavicius, G., and Tuzhilin, A., 2005, “Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions”, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 6, pp. 734-749.
[10]Balabanovic, M., and Shoham, Y., 1997, “Fab:Content-Based Collaborative Recommendation”, Communications of the ACM, Vol. 40, No. 3, pp. 66-72.
[11]Berry, M.J.A., and Linoff, G., 1997, Data mining Technique: For Marketing, Sale, And Customer Support, Wiley Computer, New York.
[12]Bendakir, N., and Aimeur, E., 2006, “Using association rules for course recommendation”, Proceedings of the AAAI Workshop on Educational Data Mining, pp. 31-40.
[13]Chen, M.S., Han, J., and Yu, P.S., 1996, “Data Mining:An Overview from a Database Perspective”, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 866-883.
[14]Cho, Y.H., and Kim, J.K., 2005, “Mining Changes in Customer Buying Behavior for Collaborative Recommendations”, Expert Systems with Applications, Vol. 28, No. 2, pp. 359-369.
[15]Chu, K.K., Chang, M., and Hsia, Y.T., 2003, “Designing a Course Recommendation System on Web based on the Students'' Course Selection Records”, Proceedings of the AACE World Conference on Educational Multimedia, Hypermedia & Telecommunications, pp. 14-21.
[16]Farzan, R., and Brusilovsky, P., 2006, “Social Navigation Support in a Course Recommender System”, Proceedings of the 4th International Conference on Adaptive Hypermedia and Apadtive Web-based Systems, pp. 91-100.
[17]Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., 1996, “The KDD Process for Extracting Useful Knowledge from Volumes of Data”, Communication of the ACM, Vol. 39, No. 11, pp. 27-34.
[18]Groth, R., 2000, Data Mining: Building Competitive Advantage, Prentice Hall PTR, USA.
[19]Ham, J., and Kamber, M., 2006, Data Mining Concepts and Techniques”, 2nd Ed, Morgan Kaufmann Publishers, San Francisco.
[20]Han, P., Xie, B., Yang, F., and Shen, R., 2004, “A scalable P2P recommender system based on distributed collaborative filtering”, Expert Systems with Applications, Vol. 27, No. 2, pp. 203-210.
[21]Herlocker, J.L., Konstan, J.A., and Riedl, J., 2000, “Explaining Collaborative Filtering Recommendations”, Proceedings of the 2000 ACM conference on Computer supported cooperative work, pp. 241-250.
[22]Krulwich, B., and Burkey, C., 1996, “Learning user information interests through extraction of semantically significant phrases”, Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access.
[23]Kleissner, C., 1998, “Data mining for The Enterprise”, Proceedings of the 31st Hawaii International Conference, Vol. 7, No. 7, pp. 295-304.
[24]Liu, D.R., and Shin, Y.Y., 2005a, “Integrating AHP and Data Mining for Product Recommendation based on customer lifetime value”, Information and Management, Vol. 42, No. 3, pp. 387-400.
[25]Liu, D.R., and Shin, Y.Y., 2005b, “Hybrid Approaches to Product Recommendation Based on Customer Lifetime Value and Purchase Preferences”, The Journal of Systems and Software, Vol. 77, No. 2, pp. 181-191.
[26]Linden, G., Smith, B., and York, J., 2003, “Amazon.com recommendations:item-to-item collaborative filtering”, IEEE Internet Computing, Vol. 7, No. 1, pp. 76-80.
[27]Luan, J., 2001, “Data Mining as Driven by Knowledge Management in Higher Education-Persistence Clustering and Prediction”, Keynote for SPSS Public Conference, UCSF.
[28]Lang, K., 1995, “Newsweeder: Learning to Filter Netnews”, Proceedings of the 12th International Conference on Machine Learning, pp. 331-339.
[29]Li, Q., Myaeng, S.H., and Kim, B.M., 2007, “A Probabilistic Music Recommender Considering User Opinions and Audio Features”, Information Processing and Management, Vol. 43, No. 2, pp. 473-487.
[30]Mobasher, B., Dai, H., Luo, T., and Nakagawa, M., 2001, “Effective Personalization Based on Association Rule Discovery from Web Usage Data”, Proceeding of the 3rd International Workshop on Web Information and Data Management, pp. 9-15.
[31]Melville, P., Mooney, R.J., and Nagarajan, R., 2002, “Content-Boosted Collaborative Filtering for Improved Recommendations”, Proceedings of the 18th National Conference on Artificial Intelligence, pp. 187-192.
[32]O’Mahony, M.P., and Smyth, B., 2007, “A Recommender System for On-line Course Enrolment:An Initial Study”, Proceedings of the ACM conference on Recommender systems, pp. 19-20.
[33]Pazzani, M., 1999, “A Framework for Collaborative, Content-Based, and Demographic Filtering”, Artificial Intelligence Review, Vol. 13, No. 5-6, pp. 393-408.
[34]Rucker, J., and Polanco, M.J., 1997, “Personalized navigation for the Web”, Communications of the ACM, Vol. 40, No. 3, pp. 73-76.
[35]Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J., 1994, “GroupLens: An open architecture for collaborative filtering of netnews”, Proceedings of the ACM Conference on Computer supported Cooperative Work, pp. 175-186.
[36]Sarwar, B., Karypis, G., Konstan, J., and Riedl, J., 2000, “Analysis of Recommendation Algorithms for E-commerce”, Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158–167.
[37]Sarwar, B., Karypis, G., Konstan, J., and Riedl, J., 2001, “Item-based Collaborative Filtering Recommendation Algorithms”, Proceedings of the 10th International World Wide Web Conference, pp. 285-295.
[38]Sandvig, J., and Burke, R., 2005, “Aacorn:A CBR recommender for academic advising”, Technical Report TR05-015. DePaul University.
[39]Schafer, J.B., Konstan, J., and Riedl, J., 1999, “Recommender Systems in E-Commerce”, Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158-166.
[40]Schafer, J.B., Konstan, J.A., and Riedl, J., 2001, “E-commerce Recommendation Applications”, Journal of Data Mining and Knowledge Discovery, Vol. 5, No. 1-2, pp. 115-153.
[41]Shardanand, U., and Maes, P., 1995, “Social Information Filtering: Algorithms for Automating ‘Word of Mouth’ ”, Proceedings of the SIGHI Conference on Human Factors in Computing Systems, pp. 210-217.
[42]SPSS, 2001, “White paper-The SPSS TwoStep Cluster Component”, Technical Report: TSCWP-0101, SPSS lnc. USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊