跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 04:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥儒
研究生(外文):Yen Ju Chen
論文名稱:草酸配製之自聚性多孔氧化鋁發光特性之研究
論文名稱(外文):Characterization of luminescence properties in the self-ordered porous anodic alumina grown by oxalic acid electrolytes
指導教授:倪澤恩
指導教授(外文):T. E. Nee
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:78
中文關鍵詞:陽極氧化鋁多孔氧化鋁奈米孔洞孔洞氧化鋁
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以電化學氧化還原技術,控制並製作奈米級孔洞結構之多孔陽極氧化鋁於矽基板上,並針對不同草酸電解液莫耳濃度於半導體材料表面上,多孔陽極氧化鋁材料的不規則載子侷限發光機制進行光學特性量測分析。首先由變溫光激發光的量測結果發現,有輻射復合的機制產生,此輻射復合機制發生於藍光螢光的波段上。以明顯的不對稱波形分析可知,是由兩個不同發光中心所組合而成。
根據之前文獻可知,結構特性上,電化學的電壓大小與電解液的濃度及溫度,會相對影響多孔陽極氧化鋁結構品質、孔洞直徑與密度。在光學特性上,此兩個發光中心主要是由於多孔陽極氧化鋁內部產生帶一個電子的氧空缺(F+ center)與帶兩個電子的氧空缺(F center)所造成。這兩個缺陷中心會去捕捉由激發態掉到基態的載子,以輻射的形式釋放能量;缺陷分佈上,F+ center的比例會因為孔洞深度與電解液濃度的增加而減少,而F center趨勢則與F+ center相反。在量測溫度的改變,其強度有均勻地增強、衰弱的趨勢,這是由於晶格受到熱效應的影響,導致輻射復合機率變低,而非輻射復合的機率相對變高。
Porous anodic alumina (PAA) film produced by the anodization technique has a nanoscale porous structure in mass production and the pore height and diameter are controllable and was applied in the fabrication of visible spectral range optical devices. In order to characterize the luminescence properties, we have formed the self-ordered PAA films which evaporated onto silicon substrates. In this work, the anomalous luminescence properties of carrier confinement in PAA films have been investigated by introducing oxalic acid electrolyte into the anodization technique. The temperature-dependent photoluminescence (PL) spectra were measured to characterize the recombination mechanisms. From the PL spectra of PAA films, it has found the asymmetrical luminescence profile in the blue emission region. It was used the Gaussian function to divided into two subbands which originate in two kinds of different oxygen-deficient defect centers, i.e., F+ (oxygen vacancy with only one electron) and F (oxygen vacancy with two electrons) centers, respectively. The density of the F centers is the largest on the surface, followed by a gradual decrease with an increase in the pore wall depth and electrolyte concentration. However, it was observed the reverse trend of the F+ centers. In strong contrast to a commonly expected trend of uniformly reduced non-radiative recombination with decreasing the lattice temperature, anomalous low-temperature PL growing and declining is observed between the F and F+ centers. The theoretical models are invoked to corroborate the anomalous temperature behaviors. All the calculations are agreement with the experimental observations.
中文摘要................................................................................................... i
英文摘要.................................................................................................. ii
誌謝...........................................................................................................iii
目錄...........................................................................................................iv
圖目錄........................................................................................................v
表目錄.....................................................................................................viii
第一章 緒論...........................................................................................1
1.1研究動機.......................................................................................1
1.2奈米材料研究背景.......................................................................2
1.3 量子效應......................................................................................3
1.4 相關文獻回顧..............................................................................4
1.5 多孔氧化鋁結構介紹..................................................................6
1.6 多孔氧化鋁成份........................................................................11
1.7 多孔氧化鋁發光機制................................................................12
第二章 基本實驗原理與方法.............................................................15
2.1 實驗材料與機台設備................................................................15
2.2 實驗製作流程............................................................................15
2.3 量測系統與實驗原理................................................................21
2.3.1 X射線繞射量測..............................................................21
2.3.2 場發射式掃描試電子顯微鏡 .......................................22
2.3.3 變溫光激發螢光光譜量測系統.....................................25
2.3.4 變溫時間解析光激發螢光光譜系統.............................26
第三章 樣品B變濃度量測分析.........................................................30
3.1 FE-SEM量測..............................................................................30
3.2 XRD繞射儀分析........................................................................30
3.3低溫光激發螢光光譜分析.........................................................31
3.4光激光譜積分強度分析.............................................................31
3.5光激光譜歸一化積分強度分析.................................................32
3.6變溫光激發光譜積分強度之Arrhenius分析............................33
第四章 樣品A變退火量測分析與討論.............................................44
4.1 XRD繞射儀分析........................................................................44
4.2光激發光譜積分強度與溫度及熱退火溫度的相依關係.........45
4.3樣品A變溫光激發光譜積分強度之Arrhenius分析................46
4.4時間解析光譜圖-輻射復合速率之分析....................................47
4.5光激光譜半高寬與溫度關係.....................................................47
第五章 結論.........................................................................................61
參考文獻...................................................................................................64
圖目錄
圖1.3.1奈米概念發揮空間........................................................................3
圖1.3.2不同結構之能態密度分佈............................................................4
圖1.5.1 多孔氧化鋁結構示意圖..............................................................6
圖1.5.2 多孔氧化鋁剖面示意圖..............................................................8
圖1.5.3 定電流模式與定電壓模式下電壓/氧化時間、電流密度/氧化時間曲線圖...............................................................................................10
圖1.5.4 氧化鋁表面形成孔洞過程示意圖............................................10
圖1.7.1 分子間能量轉移示意圖............................................................13
圖1.7.2 方位座標圖模型........................................................................13
圖2.2.1 熱蒸鍍及電子束蒸鍍機台........................................................16
圖2.2.2 高溫爐管機台............................................................................16
圖2.2.3 恆溫循環水槽............................................................................17
圖2.2.4 直流電源供應器........................................................................17
圖2.2.5 陽極處理實驗架構圖................................................................18
圖2.3.1 X射線繞射分析儀構造..............................................................20
圖2.3.2 布拉格繞射................................................................................21
圖2.3.3 FE-SEM設備圖..........................................................................22
圖2.3.4 場發射掃描式電子顯微鏡架構圖............................................23
圖2.3.5 FE-SEM成像原理示意圖..........................................................24
圖2.3.6 變溫光激發螢光系統架設圖....................................................26
圖2.3.7 變溫時間解析光激發螢光系統架設圖....................................28
圖3.1.1 多孔氧化鋁FE-SEM圖.............................................................35
圖3.2.1 為樣品B之X射線繞射分析譜................................................36
圖3.3.1 在20K下0.1M草酸PL光譜圖.................................................37
圖3.3.2 在20K下0.2M草酸PL光譜圖.................................................37
圖3.3.3 在20K下0.3M草酸PL光譜圖.................................................38
圖3.3.4 在20K下0.4M草酸PL光譜圖.................................................38
圖3.3.5 在20K下0.5M草酸PL光譜圖.................................................39
圖3.4.1 F+發光中心PL強度對濃度作圖................................................40
圖3.4.2 F發光中心PL強度對濃度作圖.................................................40
圖3.5.1 在20K下歸一化後F發光中心與F+發光中心強度對濃度作圖...............................................................................................................41
圖3.6.1 樣品B F+缺陷變溫PL光譜積分強度之Arrhenius圖……......42
圖3.6.2 樣品B F缺陷變溫PL光譜積分強度之Arrhenius圖..............42
圖4.1.1 SampleA無退火之XRD圖........................................................49
圖4.1.2 SampleA 400。C退火溫度之XRD圖..........................................49
圖4.1.3 SampleA 700。C退火溫度之XRD圖..........................................50
圖4.1.4 SampleA XRD圖之Al2O3(400)半高寬......................................51
圖4.2.1 SampleA F+缺陷中心變溫PL強度趨勢圖................................52
圖4.2.2 SampleA F缺陷中心變溫PL強度趨勢圖.................................52
圖4.3.1 樣品A F+缺陷變溫PL光譜積分強度之Arrhenius圖..............53
圖4.3.2 樣品A F缺陷變溫PL光譜積分強度之Arrhenius圖..............53
圖4.4.1 F+缺陷之輻射復合速率.............................................................54
圖4.4.2 F缺陷之輻射復合速率..............................................................54
圖4.5.1 無退火之半高寬值隨溫度變化關係........................................55
圖4.5.2 熱退火400℃之半高寬值隨溫度變化關係..............................55
圖4.5.3 熱退火700℃之半高寬值隨溫度變化關係..............................56
圖4.5.4 無退火之coth-1(W2/W02)與1/(t-20)關係圖...............................57
圖4.5.5 熱退火400℃之coth-1(W2/W02)與1/(t-20)關係圖....................57
圖4.5.6 熱退火700℃之coth-1(W2/W02)與1/(t-20)關係圖....................58

表目錄
表1.1 HA與MA之比較............................................................................7
表1.2 氧化鋁內部異質結構種類...........................................................12
表2.1 定電流製作條件...........................................................................16
表2.2 定電壓製作條件...........................................................................19
表2.3 光激發螢光量測參數條件...........................................................27
表3.1樣品B活化能值.............................................................................34
表4.1 F+與F發光中心隨熱退火溫度變化之活化能.............................46
[1] F. Rumiche, H. H. Wang, J. E. Indacochea, and M. L. Wang, “Anodized aluminum oxide (AAO) based nanowells for hydrogen detection” Proc. SPIE Vol. 6932, (2008).
[2] D. Ding, Z. Chen, S. Rajaputra, V. Singh, “Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode” Sensors and Actuators B 124 (2007).
[3] H. Masuda, M. Ohya, H. Asoh, M. Nakao,M. Nohtomi and T. Tamamura, “Photonic Crystal Using Anodic Porous Alumina” Jpn. J. Appl. Phys. Vol. 38 (1999) Pt. 2, No. 12A (1999).
[4] J. Xu, J. Xia, and J. Wang, “Quantum dots confined in nanoporous alumina membranes” Appl. Phys. Lett. 89, 133110 (2006).
[5] Y. Du, W. L. Cai,a) C. M. Mo, and J. Chen, “Preparation and photoluminescence of alumina membranes with ordered pore arrays” Appl. Phys. Lett., Vol. 74, No. 20, (1999).
[6] P. P. Mardilovich, A. N. Govyadinov, N. I. Mazurenko,R. Paterson, “New and modified anodic alumina membranes Part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes” Journal of Membrane Science 98 (1995) .
[7] H. Masuda, K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina” Science 268 pp. 1466-1468 (1995).
[8] W. Lee, R. Ji, U. Gosele and K. Nielsch “Fast fabrication of long-range ordered porous alumina membranes by hard anodization” nature materials Vol 5 (2006).
[9] W. Lee, R. Ji, U. Gosele and K. Nielsch “A Continuous Process for Structurally Well-Defined Al2O3 Nanotubes Based on Pulse Anodization of Aluminum” Nano Lett., 8 (8), pp 2155–2160 (2008).
[10] 楊昆霖,〈大面積規則陽極氧化鋁孔洞之研製與相關運用〉,國立中山大學,民國96年。
[11] 陳光維,〈奈米陣列氧化鋁之光學特性研究〉,中原大學,民國95年。
[12] L. Margulies, H. Rozen and E. Cohen “Energy transfer at the surface of clays and protection of pesticides from photodegradation” Nature 315, 658 - 659 (1985).
[13] G. Allan and C. Delerue “Energy transfer between semiconductor nanocrystals: Validity of Förster's theory” Phys. Rev. B 75,195311 (2007).
[14] H. Y. Xie, D. P. Tsai “The Theoretical Analysis of Energy Transfer Rate Near Films” (2007).
[15] 林麗娟,〈X 光繞射原理及其應用〉,工業材料86 期, 83 年2 月。
[16] 蘇國翔,〈鋁表面處理與應用之研究〉,朝陽科技大學,民國95 年。
[17] H. Masuda. H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamaura, “Highly ordered nanochannel-array architecture in anodic alumina” Appl. Phys. Lett. Vol. 71, 2770 (1997).
[18] J.H. Wu, X.L.Wu, N. Tang, Y.F. Mei, X.M. Bao “Strong ultraviolet and violet photoluminescence fromSi-based anodic porous alumina films” Appl. Phys. A 72, 735–737 (2001).
[19] G. S. Huang, X. L. Wu, Y. Xie, X. F. Shao, and S. H. Wang “Light emission from silicon-based porous anodic alumina formed in 0.5 M oxalic acid” J. Appl. Phys., Vol. 94, No. 4, (2003).
[20] G. S. Huang, X. L. Wu,a) Y. F. Mei, and X. F. Shao “Strong blue emission from anodic alumina membranes with ordered nanopore array” J. Appl. Phys., Vol. 93, No. 1, (2003).
[21] M.R. Kim, J.Y. Kim, and D. J. Jang “Electrochemical fabrication of arrayed alumina nanowires showing strong blue emission” Eur. Phys. J. D 43, 279–282 (2007).
[22] W.M. de Azevedo, D.D. de Carvalho, E.A. de Vasconcelos,E.F. da Silva Jr. “Photoluminescence characteristics of rare earth-doped nanoporous aluminum oxide” Applied Surface Science 234, 457–461 (2004).
[23] S. Hashimoto, K. Hattori, K. Inoue, A. Nakahashi, S. Honda, Y. Iwamoto, “Self-flux synthesis and photoluminescent properties of LiAl5O8” Materials Research Bulletin 44, 70–73 (2009).
[24] C. C. Klick, D. A. Patterson, and R. S. Knox “Absorption Band shapes for the F Center and Thallium in KCl” Phy. Rev. vol 133 6A (1964).
[25] W. L. Xu, M. J. Zheng, S. Wu, and W. Z. Shen “Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes” Appl. Phys. Lett., Vol. 85, No. 19, (2004).
[26] H. S. Kalsi, M. Dutta, S. K. Sharda, G. K. Padam, N. K. arora, B. K. Das “Fabrication and characterization of microwave sintered β-Al2O3 tubes” materials science letters 19, 1119 – 1121 (2000).
[27] Y. B. Li, M. J. Zheng and L. Ma “High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range” Appl. Phys. Lett. 91, 073109 (2007).
[28] 王國禎,〈陽極氧化鋁模板製作與應用〉,民國94年。
[29] J. W. Diggle, T. C. Downie, and C. W. Goulding “Anodic oxide films on aluminum” Chem. Rev., 1969, 69 (3), 365-405 (2002).
[30] Mark Fox, Optical Properties of solids, Oxford, New York, 2001.
[31] Prof. Dr. Ulrich G¨osele, Prof. Dr. Helmut F¨oll, Prof. Dr. Patrik Schmuki “Fabrication of monodomain porous alumina using nanoimprint lithography and its applications" (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top