跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡曜駿
研究生(外文):Yao-Chun Tsai
論文名稱:環保冷媒R-600a在具條狀內插物水平圓管內之蒸發熱傳分析
論文名稱(外文):Evaporative Heat Transfer in Horizontal Tubes with Strip-Type Inserts Using Refrigerant-600a
指導教授:謝曉星
指導教授(外文):Shou-Shing Hsieh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:106
中文關鍵詞:蒸發熱傳水平圓管條狀形內插物R-600a
外文關鍵詞:Evaporative Heat TransferHorizontal tubeStrip-type insertR-600a
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗方式進行,以設計特殊內插物之水平圓管來達到熱傳增強的目的。利用管中加入內插物來提高熱傳效果;使用不會破壞地球環境之環保冷媒R-600a(異丁烷)為蒸發器工作流體。以電阻絲加熱之水平圓管模擬蒸發器,探討R-600a之蒸發熱傳特性及分析內插物之熱傳增強性能。測試區水平圓管之加熱長度為2m,外徑及內徑分別為12.7mm及10.6mm。本實驗之測試管計有:平滑空管、一字片管、一字片穿孔管兩支(孔數不同)、十字片管等五支。
實驗結果得知,在低乾度低冷媒質量通量時,十字片由於有較大之熱傳面積,為最佳之熱傳增強工具;隨著冷媒質量通量及乾度之增加,十字片及一字片之熱傳係數明顯下降。然而,穿孔之內插物由於穿孔的影響,同時增加了核化沸騰及強制對流蒸發之效應,使得在高乾度及高冷媒質量通量時,亦保有不錯之熱傳增強效果;而且,由實驗結果得知,穿孔內插物管之壓降值約與一字片管相同,小於十字片管所產生之壓降。因此,在高乾度(x>0.5)及高冷媒質量通量( )時,穿孔之內插物取代十字片成為本實驗中最佳之熱傳增強工具。
文中並對冷媒乾度,冷媒質量通量,及加熱通量等對熱傳係數及壓降的影響作探討。最後並得到適用於本實驗特殊內插物管之熱傳係數經驗公式及兩相摩擦因子經驗公式,以提供一般化使用。

The research will be performed experimentally. The test section is a copper horizontal tube heated indirectly by the coil with direct electrical current. The test tube has a heated length of 2 m, and outside and inside diameters of 12.7mm and 10.6mm, respectively. Based on the experiments, we want to find the evaporative heat transfer characteristic of R-600a and conduct an analysis on enhanced tubes with inserts. There are four inserts considered in the study which include longitudinal strip, crossed strip, perforated strip(I), and perforated strip(II).
Based on the repeated experiments, the results show that when the condition with low refrigerant quality and mass flux, the tube with crossed strip insert have the best heat transfer performance owing to its greater heat transfer area .With the increasing of the quality and mass flux, the heat transfer coefficient of the tubes with longitudinal strip and crossed strip inserts dip apparently. However, the perforated inserts keep well heat transfer performance at high quality and mass flux because of the holes which result in the increasing effect in both nucleate boiling and forced convection boiling region. The pressure drop of the tube with perforated inserts is almost the same with the tube with longitudinal strip insert and smaller than the tube with crossed strip insert. The results can be found that instead of the crossed strip, the perforated inserts are the best tool for the enhancement of heat transfer performance at high quality(x>0.5) and high mass flux(G>356 ) in present study.
For the sake of the special enhanced tubes, we can not exactly predict the experimental results by using the traditional heat transfer and pressure drop correlation. Based on the repeated experiments, we finished the related heat transfer and pressure drop correlation which belong to our special inserted tubes. To the finial object, we hope these results will be helpful to the manufacture of the evaporator.

目 錄
頁次
目錄………………………………………………………………………………i
圖目錄………………………………………………………………………………… iv
表目錄……………………………………………………………………vii
符號說明…………………………………………………………………………… viii
論文摘要(中文)……………………………………………………………xii
論文摘要(英文)……………………………………………………………xiii
第一章 緒論…………………………………………………………… 1
1-1 前言…………………………………………………………… 1
1-2 背景與目的…………………………………………………… 2
1-3 文獻回顧…………………………………………………………5
1-4 研究範圍………………………………………………………11
第二章 實驗系統設備……………………………………………………13
2-1 冷媒迴路系統……………………………………………………13
2-2 冷卻迴路系統…………………………………………………15
2-3 測試系統…………………… ………………………………………15
第三章 實驗方法、範圍及步驟.20
3-1 溫度量測…………………………………………………20
3-2 壓力量測…………………………………………………20
3-3 冷媒流量量測………………………………………… 21
3-4 實驗範圍..…………………………………………………21
3-5 實驗步驟………………………………………………22
第四章 實驗數據處理………………………………………………… 27
4-1 熱傳分析………………………………………………… 27
4-2 壓降分析………………………………………………….29
第五章 結果與討論……………………………………………………33
5-1 單相強制對流測試…………………………………………33
5-2 兩相飽和流動沸騰局部熱傳係數之變化……………34
5-3 流場型態之討論………………………………………36
5-4 局部壓降之探討……………………………………………38
5-5 平滑管熱傳係數與經驗公式之比較……………………39
5-6 平滑管壓降與經驗公式之比較 ………………………40
5-7 不同增強管間之比較…………………………………41
5-7-1 熱傳係數增強比之比較………………………………41
5-7-2 壓降比之關係……………………………………………45
5-7-3 效益評估…………………………………………………46
5-8 熱傳係數經驗公式………………………………………47
5-8-1 低乾度(x<0.5)之熱傳係數經驗公式……………………48
5-8-2 高乾度(x>0.5)之熱傳係數經驗公式……………………49
5-9 兩相摩擦因子經驗公式………………………………51
第六章 結論與建議………………………………………………………91
6-1 結論………………………………………………………91
6-2 建議與改進………………………………………………93
參考文獻…………………………………………………………………………95
附錄……………………………………………………………………………102
圖 目 錄
頁次
圖 2.1 實驗設備立體圖16
圖 2.2 實驗系統示意圖17
圖 2.3 測試區詳細構造圖18
圖 2.4 本實驗內插物尺寸圖19
圖 3.1 實驗步驟程序圖26
圖 5.1 冷媒R-134a在平滑管內局部紐塞數沿流向之變化55
圖 5.2 冷媒R-600a在平滑管內局部紐塞數沿流向之變化
( : Dittus-Boelter equation計算之紐塞數) 56
圖 5.3 單相強制對流熱傳及壓降測試57
圖 5.4 平滑管於不同冷媒質量通量及固定熱通量(a)
(b) 下,局部熱傳係數與冷媒乾度之關係58
圖 5.4(續) 平滑管於不同冷媒質量通量及固定熱通量(c)
(d) 下,局部熱傳係數與冷媒乾度之關係59
圖 5.5 R-600a於飽和溫度6 之流譜圖(Taitel and Dukler, 1976)60
圖 5.6 平滑管內在固定冷媒質量通量 及不同加熱通量
下,局部熱傳係數與冷媒乾度之關係61
圖 5.7 平滑管熱傳係數與經驗公式之比較62
圖 5.8 平滑管內加熱通量對單位長度壓降之影響63
圖 5.9 平滑管內 vs 64
圖 5.10 平滑管內 vs 65
圖 5.11 平滑管內完全液態兩相摩擦乘數 實驗值與Friedel
(1979)經驗公式之比較66
圖 5.12 平滑管內測試段壓降與經驗公式之比較67
圖 5.13 一字片管於不同冷媒質量通量及固定熱通量(a)
(b) 下,局部熱傳係數與冷媒乾度之關係 68
圖 5.13(續) 一字片管於不同冷媒質量通量及固定熱通量(c)
(d) 下,局部熱傳係數與冷媒乾度之關係69
圖 5.14 穿孔(I)於不同冷媒質量通量及固定熱通量(a)
(b) 下,局部熱傳係數與冷媒乾度之關係70
圖 5.14(續) 穿孔(I)於不同冷媒質量通量及固定熱通量(c)
(d) 下,局部熱傳係數與冷媒乾度之關係71
圖 5.15 穿孔(II)於不同冷媒質量通量及固定熱通量(a)
(b) 下,局部熱傳係數與冷媒乾度之關係72
圖 5.15(續) 穿孔(II)於不同冷媒質量通量及固定熱通量(c)
(d) 下,局部熱傳係數與冷媒乾度之關係73
圖 5.16 十字片管於不同冷媒質量通量及固定熱通量(a)
(b) 下,局部熱傳係數與冷媒乾度之關係74
圖 5.16(續) 十字片管於不同冷媒質量通量及固定熱通量(c)
(d) 下,局部熱傳係數與冷媒乾度之關係75
圖 5.17 在熱通量(a) (b) 下,壓降比與
冷媒質量通量的關係76
圖 5.18 在冷媒質量通量 及熱通量(a)
(b) 下,局部熱傳係數增強比與乾度之關係77
圖 5.19 在熱通量(a) (b) 下,平均熱傳係數
增強比與冷媒質量通量之關係78
圖 5.20 在熱通量(a) (b) 下,熱傳增強性能
比與冷媒質量通量之關係79
圖 5.21 本實驗不同測試管在乾度x>0.5之熱傳係數經驗公式80
圖 5.22 (a)本實驗內插物管在乾度x>0.5之熱傳係數經驗公式
(b)由圖(a)之經驗公式計算所得之值與實驗值之比較81
圖 5.23 本實驗平滑空管在乾度x<0.5之熱傳係數經驗公式82
圖 5.24 本實驗不同測試管在乾度x<0.5之熱傳係數經驗公式83
圖 5.25 (a)本實驗內插物管在乾度x<0.5之熱傳係數經驗公式
(b)由圖(a)之經驗公式計算所得之值與實驗值之比較84
圖 5.26 (a)本實驗平滑空管之熱傳係數經驗公式
(b)由圖(a)之經驗公式計算所得之值與實驗值之比較85
圖 5.27 本實驗不同測試管單位長度之壓降隨乾度之變化
(a)絕熱狀態(b)加熱狀態86
圖 5.28 本實驗不同測試管兩相摩擦因子 與乾度之關係87
圖 5.29 (a)本實驗不同測試管之兩相摩擦因子經驗公式
(b)本實驗內插物管之兩相摩擦因子經驗公式88
圖 5.30 由圖5.29(b)之兩相摩擦因子經驗公式所計算之值與實驗
值比較之結果89
圖 5.31 (a)本實驗不同測試管之兩相摩擦因子經驗公式
(b)本實驗內插物管之兩相摩擦因子經驗公式
( based on , proposed by Dukler et al. )90
表 目 錄
頁次
表 3.1 本實驗控制之參數及內插物尺寸大小24
表 3.2 R-600a與R-134a於飽和溫度6 時之熱力物理性質25
符 號 說 明
:boiling number,
:convection number
:管內直徑,mm
:管外直徑,mm
:input voltage, V
: 增強係數(enhancement factor)
:friction factor
Fr:Froude number
: 冷媒質量通量,
:熱傳係數,
:latent heat of evaporation,
:input current, Amp
:熱傳導係數,
L :長度
:冷媒質量流率,
:紐塞數,
:壓力
: 普蘭特數(Prandtl number)
:reduced pressure
:pressure drop due to acceleration
:frictional pressure drop
:管壁平均熱通量,
: 雷諾數(Reynolds number)
:equivalent two-phase Reynolds number

: 抑制因子(suppression factor)
:溫度,
:冷媒飽和溫度
:管外壁溫度
:管內壁溫度
:冷媒入口溫度
:冷媒出口溫度
x:冷媒乾度
:內插物厚度
:內插物寬度
: Martinellli parameter
希臘字母
:密度
:表面張力
:viscosity
:two phase friction multiplier for liquid flowing alone
:two phase friction multiplier based on total mixture flowing as liquid
:two phase friction multiplier for vapor flowing alone
:specific volume
上標
:與時間有關之性質
__ :平均值
下標
a:增強管
s:平滑管
:飽和液相
g:飽和汽相
i:管內徑
o:管外徑
:管內壁
:管外壁
:Two Phase
pb:pool boiling
NB:Nucleate boiling
FC:Force convective boiling
eq:properties based on homogeneous model in two phase flow
:at location along the test section
:假設流體為完全液態於管內單獨流動

參 考 文 獻
1. Boling, C., Donovan, W. J., and Decker, A. S., 1953, "Heat Transfer of Evaporating from with Inner-Fin Tubing,"Refrigerating Engineering, pp.1338-1340.
2. Chen, J. C., 1966, "A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow, Ind. Eng. Chem., "Process Design and Development, vol 5, no. 3, pp.322-329.
3. Webb. R. L., Eckert E. R. G.,1972,"Application of Rough Surfaces to Heat Exchanger Design, "International Journal of Heat Mass Transfer, vol. 15, pp. 1645-1658.
4. Shan, M. M., 1982, "Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study, "ASHRAE Trans., vol. 88, part I, pp. 185-196.
5. Hsieh, S. S., Liauh, C. T., and Ku, A.,1986, "Heat Transfer Coefficients of
Double Pipe Heat Exchangers with Helical Type Roughened
Surface , "Journal of Heat Recovery System, vol. 7.
6. Hsieh, S. S., Liauh, C. T., and Ku, A., 1987, "Thermal Analysis of the Performance of Helical-Type, Roughened, Double-Pipe Heat Exchangers," Applied Energy, vol. 26, No. 4.
7. S. Yoshida, T. Matsunaga and H. P.-Hong, 1987, " Heat Transfer to Refrigerants in Horizontal Evaporator-Tubes with Internal, Spiral Grooves," ASME Thermal Engineering Joint Conference Vol. 5, pp165-172.
8. Kandlikar, S. G., 1990, "A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes," J. Heat Transfer, vol. pp. 219-228.
9. Kandlikar, S. G., 1991, "A Model for Correlating Flow Boiling Heat Transfer in Augmented Tubes and Compact Evaporators," Journal of Heat Transfer, vol. 113, pp. 966-972.
10. RALPH L. WEBB and NEELKANTH S. GUPTE, 1992, "A Critical Review of Correlations for Convective Vaporization in Tubes and Tube Banks,"Heat Transfer Engineering, vol. 13, no. 3, pp. 58-81.
11. K. Murata, 1993, "Forced Convective Boiling of Nonazeotropic Refrigerant Mixtures Inside Tubes,"Journal of Heat Transfer, August, vol. 115, pp. 680-689.
12. M. W. Wambsganss, D. M. France, and J. A. Jendrzejczyk, 1993, " Boiling Heat Transfer in a Horizontal Small-Diameter Tube," ASME Journal of Heat Transfer, Vol. 115, pp. 963-972.
13. Hsieh, S. S., and Kuo, M. T., 1994, " An Experimental Investigation of Augmentation of Tube-Side Heat Transfer in a Crossflow Heat Exchanger by Mean of Strip-Type Inserts," Journal of Heat Transfer, Vol. 116, PP.381.
14. Hsieh, S. S., and Wen, M. Y. , 1995, " An Experimenta Study of Flow Boiling Heat Transfer in Rib-Roughened Tube Annuli," ASME Journal of HeaTransfer, Vol. 117, pp185-194.
15. S. -S. Hsieh and M. -Y. Wen, 1996, "Developing Three-Dimensional Laminar Mixed Convection in a Circular Tube Inserted With Longitudinal Strips,"Int. J. of Heat and Mass Transfer 39, No.2, pp.299-310.
16. Friedel, L., "Improved friction pressure drop correlations for horizontal and
vertical two phase pipe flow", paper E2, European Two Phase Flow Group
Meeting, Ispra, Italy, 1979.
17.Chisholm, D. " A theoretical basis for the Lockhart-Martinelli correlation
for two-phase flow", NEL Report No. 310(1967).
18. Wambsganss, M. W., Jendrzejczyk, J. A., France, D. M. and Obot, N. T.,
1992, " Frictional Pressure Gradients in Two-Phase Flow in a Small
Horizontal Rectangular Channel" , Experimental Thermal and Fluid
Science 1992, 5: 40-46.
19. Gungor, K.E. and Winteron, R.H.S., 1986, " A General Correlation for Flow Boiling in Tubes and Annuli", Int. J. Heat Transfer, 29, 351-358.
20. Liu, Z., and Winterton, R. H. S., 1991, "A General Correlation for
Saturated and Subcooled Boiling in Tubes and Annuli, Based on a
Nucleate Pool Boiling Equation," Int. J. Heat Mass Transfer Vol. 34, No.
11, pp. 2759-2766.
21. 1998 ASHRAE handbook-Fundamentals. Atlanta:
American Society of Heating,Refrigerating and Air-Conditioning
Engineers, Inc.
22.Siva Gopalnarayanan, "Choosing The Right Refrigerant," October 1998,
Mechanical Engineering, pp92-95.
23.Yunho Hwang, Michael Ohadi, and Reinhard Radermacher, October 1998,
"Natural refrigerants substances such as air, water, ammonia,
hydrocarbons, and carbon dioxide may provide solutions to the problem
of finding environmentally acceptable refrigerants", Mechanical
Engineering, pp96- 99.
24. G. R. Kubanek and D. L. Miletti, August 1979, "Evaporative Heat
Transfer and Pressure Drop Performance of Internally - Finned Tubes with
Refrigerant 22," Journal of Heat Transfer, Vol. 101, pp447-452.
25. Van P. Carey, "Liquid-Vapor Phase-Change Phenomena( An Introduction
to the Thermophysics of Vaporization and Condensation Process in Heat
Transfer Equipment)"
26. H. Ross, R. Radermacher and M. DI Marzo and D. Didion, 1987,
"Horizontal flow boiling of pure and mixed refrigerants," J. Heat Mass
Transfer, Vol. 30, No. 5, pp979-992.
27. N. Kattan, J. R. Thome, D. Favrat, 1998, "Flow Boiling in Horizontal
Tubes: Part 3-Development of a New Heat Transfer Model Based on
Flow Pattern," Journal of Heat Transfer, Vol. 120, pp156-165.
28.N. Kattan, J. R. Thome, D. Favrat, 1998, "Flow Boiling in Horizontal
Tubes: Part 2-New Heat Transfer Data for Five Refrigerants,"Journal
of Heat Transfer, Vol. 120, pp148-155.
29. Takeshi Ebisu, Kunikazu Torikoshi, Ph.D., 1998, "Experimental Study on
Evaporation and Condensation Heat Transfer Enhancement for R-407C
Using Herringbone Heat Transfer Tube," ASHRAE Transactions pp1044-
1052.
30. R. S. Reid, M. B. Pate, A. E. Bergles, MAY 1991, "A Comparison of
Augmentation Techniques During In- Tube Evaporation of R- 113,"
Journal of Heat Transfer, Vol. 113, pp451-458.
31. Collier, J. G. and Thome, J. R., 1994," Convective Boiling and Condensation", 3nd Edition, Oxford University Press.
32. M. K. Jensen and H. P. Bensler, February 1986 , "Saturated Forced-
Convective Boiling Heat Transfer With Twisted- Tape Inserts," Journal
of Heat Transfer, Vol. 108, pp93-99.
33. L. C. Singal, C. P. Sharma and H. K.Varma, 1983, "Pressure Drop During
Forced Convection Boiling Of Binary Refrigerant Mixtures," Int. J.
Multiphase Flow Vol.9, Np. 3, pp309-323.
34. Berg, W. F., and Berg, J. L., 1980, "Flow Patterns for Isothermal
Condensation in One-Pass Air-Cooled Heat Exchangers," Heat Transfer
Engineering, Vol.1, No. 4, pp.21.
35. Bennet, C. O., and Myers, J. E., 1982, "Momentum, Heat and Mass
Transfer," 3 rd ed., McGraw-Hill, New Youk
36. Chapman, A. J., 1974, "Heat Transfer," 3 rd ed., Macmillan, New Youk .
37. Chiou, C. B., and Lu, D. C., 1997, "Pool Boiling of R-22, R-124 and R-
134a on a Plain Tube," Int J. Heat Transfer, Vol. 40, No. 7, pp.1657-1666.
38. Das, A. K., Meyer, D. W., Incheck, G. A., and Marto, P. J.,1995, "Effects
of Fin Height and Thermal Conductivity on the Performance of Integral-
Fin Tubes for Steam Condensation," National Heat Transfer Conference,
Vol. 6, pp.111.
39. Goyal, K. P., and Gupta, B. K., 1984, "An Experimental Performance
Evaluation of a Disk and Doughnut Type Heat Exchanger," Journal of
Heat Transfer , Vol. 106, pp. 759.
40.Hashizume, K., 1983, "Flow Pattern, Void Fraction, and Pressure Drop of
Refrigerant Two in a Horizontal Pipe," Int.J. Multiphase Flow, Vol. 9, No.
4, pp. 399- 410.
41. Hasan, A., Poy, R. P., and. Kalra, S. P., 1990,"Experiments on Subcooled
Flow Boiling Heat Transfer in a Vertical Annular Channel," Int. J. Heat
Mass Transfer, Vol. 33, No. 10, pp. 2285-2293.
42. Hsieh, S. S., and Wen, M. Y., 1994, "Evaporative Heat Transfer and
Enhancement Performance of Rib-Roughened Tube Annuli with
Refrigerant 114," Int. J. Heat Mass Transfer, Vol. 37, No. 3, pp.425-436.
43. Hsieh, S. S., and Wen, M. Y., 1995, "Saturated Flow Boiling eat Transfer in Internally Spirally Knurled / Integral Finned Tubes," Journal of Heat
Transfer, Vol. 117, pp.245.
44. Jung, D. S., Mcllnden, M., and Radermacher, R., 1989, "A Study of Flow
Boiling Heat Transfer with Refrigerant Mixture," Int. J. Heat Mass
Transfer, Vol. 32, No. 9, pp.1751-1764.
45. Megerlin, F. E., Murphy, R. W., and Bergles, A. E., 1974,"Augmentation of Heat Transfer in Tubes by Use of Mesh and Brush Inserts," Journal of Heat
Transfer, pp.145.
46. Nidegger, E., Thome, J. R., and Favrat, D., 1997, "Flow Boiling and
Pressure Drop Measurement for R-134a/Oil Mixtures, Part 1: Evaporation
in a Microfin Tube," HVAC&R Research, Vol. 3, No. 1, pp.38.
47. Zurcher, O., Thome, J., and Favart D., 1997, "Flow Boiling and Pressure
Drop Measurement for R-134a/Oil Mixtures, Part 2: Evaporation in a Plain
Tube," HVAC&R Research, Vol. 3, No. 1, pp.54.
48. Rohsenow, W. M., and Choi, H. Y., 1963, "Heat, and Mass, Momentum
Transfer," Library of Congress Catalog Card No. 61-15516, Printed in the
United States of America.
49. Ross, H. D., and Radermacher, R., 1987, "Suppression of Nucleate Boiling
of Pure and Mixed Refrigerants in Turbulent Annular Flow,"
Int.J.Multiphase Flow, Vol. 13, No. 6, pp. 759-772.
50. Shah, M. M., 1974, "Heat Transfer and Pressure Drop in Ammonia
Evaporators," ASHRAE Transactions, Vol. 80, Part 1.
51. Shah, M. M., 1975, "Visual Observations in Ammonia Evaporator,"
ASHRAE Transactions, Vol. 81, Part 1.
52. Schlager, L. M., Pate, M. B., and Bergles, A. E., 1990, "Evaporation and
Condensation Heat Transfer and Pressure Drop in Horizontal, 12.7-mm
Microfin Tubes with Refrigerant22," Journal of Heat Transfer, Vol.
112, pp.1041.
53. Singh A., Ohadi, M. M., and Dessiatoun, S., 1996, "Flow Boiling Heat
Transfer Coefficients of R-134a in a Microfin Tubes," Journal of Heat
Transfer, Vol. 118, pp.497.
54. MacBain, S. M., Bergles, A. E., 1997, "Heat Transfer and Pressure Drop
Characteristics of Flow Boiling in a Horizontal Deep Spirally Fluted
Tube," HVAC&R Research, Vol. 3, pp.65.
55. Thome, J. R., 1989, "Enhanced Boiling Heat Transfer," Engineering
Consultant, Rome, Italy.
56. Utkin, V. B., 1984, "Experimental Study of Boiling in Horizontal Annuli,"
Heat Transfer-Soviet Research, Vol. 16,No.3, May June.
57. Whalley, P. B., 1987, "Boiling, Condensation, and Gas-Liquid Flow,"
Department of Engineering Science, University of Oxford.
58. Webb, R. L. ,1993 , "Principles of Enhanced Heat Transfer," A Wiley-
Interscience Publication.
59. Dengler, C. E., and Addoms, J. N., "Heat Transfer Mechanism For
Vaporization of Water in a Vertical Tube", Chem. Eng. Prog. Symp. Ser., vol.
18, pp. 95-103, 1956.
60. Guerrieri, S. A., and Talty, R. D., "A Study of Heat Transfer to Organic
Liquids in Single-tube Natural Circulation Vertical Tube Boilers", chem.
Eng. Prog. Symp. Ser., vol. 52, no. 18, pp. 69-77, 1956.
61. 黃明才" 冷媒 R-134a在蛇形增強管內次冷流動沸騰分析" 國立中山
大學機械研究所碩士論文, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top