|
References 1.Adarsh Sandhu, H.H.a.M.A., Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology, 2010. 21(44): p. 442001. 2.Altınoğlu, E.İ. and J.H. Adair, Near infrared imaging with nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010. 2(5): p. 461-477. 3.Hilderbrand, S.A., et al., Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chemical Communications, 2009(28): p. 4188-4190. 4.Jiang, Y., T. Narushima, and H. Okamoto, Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat Phys, 2010. 6(12): p. 1005-1009. 5.Kim, K.-H., A. Husakou, and J. Herrmann, Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes. Opt. Express, 2010. 18(7): p. 7488-7496. 6.Mueggenburg, K.E., et al., Elastic membranes of close-packed nanoparticle arrays. Nat Mater, 2007. 6(9): p. 656-660. 7.Kim, B., et al., Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nano, 2010. 5(6): p. 465-472. 8.Catherine, C.B. and S.G.C. Adam, Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 2003. 36(13): p. R198. 9.Lee, J.-H., et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med, 2007. 13(1): p. 95-99. 10.Majetich, S.A. and Y. Jin, Magnetization Directions of Individual Nanoparticles. Science, 1999. 284(5413): p. 470-473. 11.Zhao, W., et al., Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. Journal of the American Chemical Society, 2005. 127(25): p. 8916-8917. 12.Chen, J., et al., Sb2Te3 Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity. Chemistry of Materials, 2010. 22(10): p. 3086-3092. 13.Bailey, R.E. and S. Nie, Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size. Journal of the American Chemical Society, 2003. 125(23): p. 7100-7106. 14.Li, C. and J. Lin, Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. Journal of Materials Chemistry, 2010. 20(33): p. 6831-6847. 15.Pillai, Z.S. and P.V. Kamat, What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? The Journal of Physical Chemistry B, 2004. 108(3): p. 945-951. 16.El-Sayed, I.H., X. Huang, and M.A. El-Sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 2006. 239(1): p. 129-135. 17.Grabinski, C., et al., Effect of Gold Nanorod Surface Chemistry on Cellular Response. ACS Nano, 2011. 5(4): p. 2870-2879. 18.Sonnichsen, C., et al., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotech, 2005. 23(6): p. 741-745. 19.Tao, A., P. Sinsermsuksakul, and P. Yang, Tunable plasmonic lattices of silver nanocrystals. Nat Nano, 2007. 2(7): p. 435-440. 20.Taton, T.A., C.A. Mirkin, and R.L. Letsinger, Scanometric DNA Array Detection with Nanoparticle Probes. Science, 2000. 289(5485): p. 1757-1760. 21.von Maltzahn, G., et al., Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas. Cancer Research, 2009. 69(9): p. 3892-3900. 22.Niidome, T., Development of functional gold nanorods for bioimaging and photothermal therapy. Journal of Physics: Conference Series, 2010. 232(1): p. 012011. 23.Niidome, T., et al., In Vivo Monitoring of Intravenously Injected Gold Nanorods Using Near-Infrared Light. Small, 2008. 4(7): p. 1001-1007. 24.Kemp, M.M., et al., Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans Having Distinctive Biological Activities. Biomacromolecules, 2009. 10(3): p. 589-595. 25.Chang, C.-W., C.-H. Wang, and C.-A. Peng, Gold Nanorods Modified with Chitosan As Photothermal Agents, in 13th International Conference on Biomedical Engineering, C.T. Lim and J.C.H. Goh, Editors. 2009, Springer Berlin Heidelberg. p. 874-877. 26.Chaudhury, A. and S. Das, Recent Advancement of Chitosan-Based Nanoparticles for Oral Controlled Delivery of Insulin and Other Therapeutic Agents. AAPS PharmSciTech, 2011. 12(1): p. 10-20. 27.Guo, R., et al., Direct Facile Approach to the Fabrication of Chitosan−Gold Hybrid Nanospheres. Langmuir, 2008. 24(7): p. 3459-3464. 28.Matteini, P., et al., Chitosan/Gold Nanocomposites: Chitosan Films Doped with Gold Nanorods as Laser-Activatable Hybrid Bioadhesives (Adv. Mater. 38/2010). Advanced Materials, 2010. 22(38): p. n/a-n/a. 29.Nandanan, E., N.R. Jana, and J.Y. Ying, Functionalization of Gold Nanospheres and Nanorods by Chitosan Oligosaccharide Derivatives. Advanced Materials, 2008. 20(11): p. 2068-2073. 30.Wang, C.-H., C.-W. Chang, and C.-A. Peng, Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. Journal of Nanoparticle Research, 2010: p. 1-10. 31.Agnihotri, S.A., N.N. Mallikarjuna, and T.M. Aminabhavi, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 2004. 100(1): p. 5-28. 32.Amidi, M., et al., Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews, 2010. 62(1): p. 59-82. 33.Bonoiu, A.C., et al., Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proceedings of the National Academy of Sciences, 2009. 106(14): p. 5546-5550. 34.Irvine, D.J., Drug delivery: One nanoparticle, one kill. Nat Mater, 2011. 10(5): p. 342-343. 35.Choi, W.I., et al., Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers. ACS Nano, 2011. 5(3): p. 1995-2003. 36.Chang, W.-S., et al., Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proceedings of the National Academy of Sciences, 2011. 108(50): p. 19879-19884. 37.Nelayah, J., et al., Mapping surface plasmons on a single metallic nanoparticle. Nat Phys, 2007. 3(5): p. 348-353. 38.Brown, S.D., et al., Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. Journal of the American Chemical Society, 2010. 132(13): p. 4678-4684. 39.Elghanian, R., et al., Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 1997. 277(5329): p. 1078-1081. 40.Narayanan, R., R.J. Lipert, and M.D. Porter, Cetyltrimethylammonium Bromide-Modified Spherical and Cube-Like Gold Nanoparticles as Extrinsic Raman Labels in Surface-Enhanced Raman Spectroscopy Based Heterogeneous Immunoassays. Analytical Chemistry, 2008. 80(6): p. 2265-2271. 41.Slocik, J.M., A.O. Govorov, and R.R. Naik, Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles. Nano Letters, 2011. 11(2): p. 701-705. 42.Li, Y., Y. Wu, and B.S. Ong, Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. Journal of the American Chemical Society, 2005. 127(10): p. 3266-3267. 43.Shemer, G., et al., Chirality of Silver Nanoparticles Synthesized on DNA. Journal of the American Chemical Society, 2006. 128(34): p. 11006-11007. 44.Yu MK, P.J., Jon S, Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics, 2012. 2(1): p. 3-44. 45.Kumar, S., J. Aaron, and K. Sokolov, Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protocols, 2008. 3(2): p. 314-320. 46.Kneipp, J., et al., Novel optical nanosensors for probing and imaging live cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(2): p. 214-226. 47.Sinha, R., et al., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Molecular Cancer Therapeutics, 2006. 5(8): p. 1909-1917. 48.Joao Conde, G.D., and Pedro Baptista, Noble Metal Nanoparticles Applications in Cancer. Journal of Drug Delivery, 2012. 2012. 49.Shi, J., et al., Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 2010. 10(9): p. 3223-3230. 50.Barreto, J.A., et al., Nanomaterials: Applications in Cancer Imaging and Therapy. Advanced Materials, 2011. 23(12): p. H18-H40. 51.Wang, Y., P. Brown, and Y. Xia, Nanomedicine: Swarming towards the target. Nat Mater, 2011. 10(7): p. 482-483. 52.Ntziachristos, V., Going deeper than microscopy: the optical imaging frontier in biology. Nat Meth, 2010. 7(8): p. 603-614. 53.Erathodiyil, N. and J.Y. Ying, Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Accounts of Chemical Research, 2011. 44(10): p. 925-935. 54.Kotov, N., Bioimaging: The only way is up. Nat Mater, 2011. 10(12): p. 903-904. 55.Weaver, J.B., Bioimaging: Hot nanoparticles light up cancer. Nat Nano, 2010. 5(9): p. 630-631. 56.Alivisatos, A.P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996. 271(5251): p. 933-937. 57.Aswathy, R., et al., Near-infrared quantum dots for deep tissue imaging. Analytical and Bioanalytical Chemistry, 2010. 397(4): p. 1417-1435. 58.Ballou, B., et al., Sentinel Lymph Node Imaging Using Quantum Dots in Mouse Tumor Models. Bioconjugate Chemistry, 2007. 18(2): p. 389-396. 59.Bottrill, M. and M. Green, Some aspects of quantum dot toxicity. Chemical Communications, 2011. 60.Chan, W.C.W. and S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998. 281(5385): p. 2016-2018. 61.Dabbousi, B.O., et al., (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. The Journal of Physical Chemistry B, 1997. 101(46): p. 9463-9475. 62.Erogbogbo, F., et al., Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells. ACS Nano, 2008. 2(5): p. 873-878. 63.Liu, W., et al., Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. Journal of the American Chemical Society, 2008. 130(4): p. 1274-1284. 64.Michalet, X., et al., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 2005. 307(5709): p. 538-544. 65.Reiss, P., M. Protiere, and L. Li, Core/Shell Semiconductor Nanocrystals. Small, 2009. 5(2): p. 154-168. 66.Rui, H., Ken-Tye Yong, Indrajit Roy, Hong Ding, Wing-Cheung Law, Hongxing Cai, Xihe Zhang, Lisa A Vathy, Earl J Bergey and Paras N Prasad, Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging. Nanotechnology, 2010. 21(14): p. 145105. 67.Selvan, S.T., et al., Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells. Angewandte Chemie, 2007. 119(14): p. 2500-2504. 68.Zrazhevskiy, P., M. Sena, and X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 2010. 39(11): p. 4326-4354. 69.Ron, H., A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environmental Health Perspectives, 2006. 114(2): p. 165-172. 70.Barhoumi, A. and N.J. Halas, Detecting Chemically Modified DNA Bases Using Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry Letters, 2011. 2(24): p. 3118-3123. 71.Braun, G.B., et al., Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion. The Journal of Physical Chemistry C, 2009. 72.Buckley, K. and P. Matousek, Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2011. 55(4): p. 645-652. 73.Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250. 74.Cao, Y.C., R. Jin, and C.A. Mirkin, Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science, 2002. 297(5586): p. 1536-1540. 75.Carrillo-Carrion, C., et al., Determination of Pyrimidine and Purine Bases by Reversed-Phase Capillary Liquid Chromatography with At-Line Surface-Enhanced Raman Spectroscopic Detection Employing a Novel SERS Substrate Based on ZnS/CdSe Silver–Quantum Dots. Analytical Chemistry, 2011. 83(24): p. 9391-9398. 76.Casella, M., et al., Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 79(5): p. 915-919. 77.Chen, Z., et al., Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotech, 2008. 26(11): p. 1285-1292. 78.Cong, C., et al., Raman Characterization of ABA- and ABC-Stacked Trilayer Graphene. ACS Nano, 2011. 5(11): p. 8760-8768. 79.Deneckere, A., et al., The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 80(1): p. 125-132. 80.Di Anibal, C.V., et al., Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (0). 81.Doering, W.E. and S. Nie, Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering. Analytical Chemistry, 2003. 75(22): p. 6171-6176. 82.Dong, X., H. Gu, and F. Liu, Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011(0). 83.Eliasson, C., et al., Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2008. 47(2): p. 221-229. 84.Enejder, A., C. Brackmann, and F. Svedberg, Coherent Anti-Stokes Raman Scattering Microscopy of Cellular Lipid Storage. Selected Topics in Quantum Electronics, IEEE Journal of, 2010. 16(3): p. 506-515. 85.Faulstich, F.R.L., et al., Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 80(1): p. 102-105. 86.Hellerer, T., et al., Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(37): p. 14658-14663. 87.Kim, J.-H., et al., Nanoparticle Probes with Surface Enhanced Raman Spectroscopic Tags for Cellular Cancer Targeting. Analytical Chemistry, 2006. 78(19): p. 6967-6973. 88.Kneipp, J., H. Kneipp, and K. Kneipp, SERS-a single-molecule and nanoscale tool for bioanalytics. Chemical Society Reviews, 2008. 37(5): p. 1052-1060. 89.Kneipp, K., et al., Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical Reviews, 1999. 99(10): p. 2957-2976. 90.Kneipp, K., et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Journal Name: Physical Review Letters; Journal Volume: 78; Journal Issue: 9; Other Information: PBD: Mar 1997, 1997: p. Medium: X; Size: pp. 1667-1670. 91.Kundu, P.P., et al., Raman and surface enhanced Raman spectroscopic studies of specific, small molecule activator of histone acetyltransferase p300. Journal of Molecular Structure, 2011. 999(1-3): p. 10-15. 92.Le, T.T., et al., Label-free quantitative analysis of lipid metabolism in living caenorhabditis elegans. Journal of Lipid Research, 2010. 52: p. 672-677. 93.Li, M., et al., Single cell Raman spectroscopy for cell sorting and imaging. Current Opinion in Biotechnology, 2011(0). 94.Liu, Z., et al., Multiplexed Multicolor Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008. 130(41): p. 13540-13541. 95.Lutz, B.R., et al., Spectral Analysis of Multiplex Raman Probe Signatures. ACS Nano, 2008. 2(11): p. 2306-2314. 96.M. Kerker, O.S., L. A. Bumm, and D.-S. Wang, Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver. Appiled Optics, 1980 Vol. 19(19): p. 3253-3255. 97.Maiti, K.K., et al., Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosensors and Bioelectronics, 2010. 26(2): p. 398-403. 98.Maltzahn, G.v., et al., SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating. Advanced Materials, 2009. 21(31): p. 3175-3180. 99.Mulvaney, S.P., et al., Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering. Langmuir, 2003. 19(11): p. 4784-4790. 100.Ni, J., et al., Immunoassay Readout Method Using Extrinsic Raman Labels Adsorbed on Immunogold Colloids. Analytical Chemistry, 1999. 71(21): p. 4903-4908. 101.Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102-1106. 102.Qian, X., et al., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotech, 2008. 26(1): p. 83-90. 103.Rinia, H.A., et al., Quantitative Label-Free Imaging of Lipid Composition and Packing of Individual Cellular Lipid Droplets Using Multiplex CARS Microscopy. Biophysical Journal, 2008. 95(10): p. 4908-4914. 104.Silva, R., et al., Au/SBA-15-Based Robust and Convenient-to-Use Nanopowder Material for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C, 2011. 115(46): p. 22810-22817. 105.Sun, L., C. Yu, and J. Irudayaraj, Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection. Analytical Chemistry, 2007. 79(11): p. 3981-3988. 106.Uzunbajakava, N., et al., Nonresonant Confocal Raman Imaging of DNA and Protein Distribution in Apoptotic Cells. Biophysical Journal, 2003. 84(6): p. 3968-3981. 107.von Maltzahn, G., et al., SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating. Advanced Materials, 2009. 21(31): p. 3175-3180. 108.Yu, K.N., et al., Multiplex Targeting, Tracking, and Imaging of Apoptosis by Fluorescent Surface Enhanced Raman Spectroscopic Dots. Bioconjugate Chemistry, 2007. 18(4): p. 1155-1162. 109.Zhang, J., et al., Quantitative surface enhanced Raman scattering detection based on the “sandwich” structure substrate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 79(3): p. 625-630. 110.Zavaleta, C.L., et al., Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proceedings of the National Academy of Sciences, 2009. 106(32): p. 13511-13516. 111.Hu, Q., et al., Mammalian Cell Surface Imaging with Nitrile-Functionalized Nanoprobes: Biophysical Characterization of Aggregation and Polarization Anisotropy in SERS Imaging. Journal of the American Chemical Society, 2006. 129(1): p. 14-15. 112.Cui, Y., et al., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 2001. 293(5533): p. 1289-1292. 113.Seo, W.S., et al., FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater, 2006. 5(12): p. 971-976. 114.Son, S.J., et al., Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery. Journal of the American Chemical Society, 2005. 127(20): p. 7316-7317. 115.Sun, S., et al., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 2000. 287(5460): p. 1989-1992. 116.Nie, S., D. Chiu, and R. Zare, Probing individual molecules with confocal fluorescence microscopy. Science, 1994. 266(5187): p. 1018-1021. 117.Ashrafi, K., et al., Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 2003. 421(6920): p. 268-272. 118.Fowler, S. and P. Greenspan, Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J. Histochem. Cytochem., 1985. 33(8): p. 833-836. 119.Greenspan, P., E. Mayer, and S. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol., 1985. 100(3): p. 965-973. 120.Sackett, D.L. and J. Wolff, Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Analytical Biochemistry, 1987. 167(2): p. 228-234. 121.O''Rourke, E.J., et al., C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles. Cell Metabolism, 2009. 10(5): p. 430-435. 122.Lamprecht, A. and J.-P. Benoit, Simple liquid-chromatographic method for Nile Red quantification in cell culture in spite of photobleaching. Journal of Chromatography B, 2003. 787(2): p. 415-419. 123.Varghese, R. and H.A. Wagenknecht, Non-covalent Versus Covalent Control of Self-Assembly and Chirality of Nile Red-modified Nucleoside and DNA. Chemistry – A European Journal, 2010. 16(30): p. 9040-9046. 124.Jose, J. and K. Burgess, Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron, 2006. 62(48): p. 11021-11037. 125.Yen, K., et al., A Comparative Study of Fat Storage Quantitation in Nematode Caenorhabditis elegans Using Label and Label-Free Methods. PLoS ONE, 2010. 5(9): p. e12810. 126.Chen, S.-J. and H.-T. Chang, Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation. Analytical Chemistry, 2004. 76(13): p. 3727-3734. 127.Huang, Y.-F. and H.-T. Chang, Nile Red-Adsorbed Gold Nanoparticle Matrixes for Determining Aminothiols through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2006. 78(5): p. 1485-1493. 128.J. Turkevich, P.C.S.a.J.H., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951. 11(1951): p. 55-75. 129.Roh, J.-y., et al., Ecotoxicity of Silver Nanoparticles on the Soil Nematode Caenorhabditis elegans Using Functional Ecotoxicogenomics. Environmental Science & Technology, 2009. 43(10): p. 3933-3940. 130.Hull, M.C., L.R. Cambrea, and J.S. Hovis, Infrared Spectroscopy of Fluid Lipid Bilayers. Analytical Chemistry, 2005. 77(18): p. 6096-6099. 131.Kucherak, O.A., et al., Switchable Nile Red-Based Probe for Cholesterol and Lipid Order at the Outer Leaflet of Biomembranes. Journal of the American Chemical Society, 2010. 132(13): p. 4907-4916. 132.Chun, A.L., Gold nanorods: Delivering the message. Nat Nano, 2009. 133.Zaheer, A., et al., In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotech, 2001. 19(12): p. 1148-1154. 134.Nikoobakht, B. and M.A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials, 2003. 15(10): p. 1957-1962. 135.Jana, N.R., L. Gearheart, and C.J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B, 2001. 105(19): p. 4065-4067. 136.Gole, A. and C.J. Murphy, Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed. Chemistry of Materials, 2004. 16(19): p. 3633-3640. 137.Huang, X., et al., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120. 138.Li, Z., et al., RGD-Conjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Therapy†. Molecular Pharmaceutics, 2009. 7(1): p. 94-104. 139.Wang, L., et al., Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. Nano Letters, 2010. 11(2): p. 772-780. 140.Huff, T.B., et al., Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine, 2007. 2(1): p. 125-132. 141.Huang, Y.-F., et al., Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods. Langmuir, 2008. 24(20): p. 11860-11865. 142.Thierry, B., et al., A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chemical Communications, 2009(13): p. 1724-1726. 143.Lopez-Cruz, A., et al., Water dispersible iron oxide nanoparticles coated with covalently linked chitosan. Journal of Materials Chemistry, 2009. 19(37): p. 6870-6876. 144.Jing, Z. and et al., Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology, 2010. 21(28): p. 285106. 145.Alkilany, A.M., et al., Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects. Small, 2009. 5(6): p. 701-708. 146.Huang, X., et al., A Reexamination of Active and Passive Tumor Targeting by Using Rod-Shaped Gold Nanocrystals and Covalently Conjugated Peptide Ligands. ACS Nano, 2010. 4(10): p. 5887-5896. 147.Rayavarapu, R.G., et al., Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. International journal of biomedical imaging, 2007. 2007: p. 29817.
|