跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/09 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇俞之
研究生(外文):Yu-Jhih Su
論文名稱:以電吸附技術回收工業廢水研究
論文名稱(外文):Study on Recycling Industrial Wastewater by Electrosorption Technology
指導教授:黃振家黃振家引用關係
指導教授(外文):Chen-Chia Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:活性碳纖布電吸附工業用水回收
外文關鍵詞:industrial wastewater recoveryactivated carbon clothelectrosorption
相關次數:
  • 被引用被引用:3
  • 點閱點閱:529
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目標在探討以不同活性碳纖布作為電吸附電極,施加電位及未施加電位情況下對廢水中銅離子的吸附與電吸附效能。活性碳纖布係商用聚丙烯腈基,經由幾丁聚醣、硝酸改質。另外,亦探討硝酸銅溶液中加入微量的EDTA與檸檬酸錯合劑後,活性碳纖布對銅離子吸附效能。活性碳纖布表面物理化學性質利用氮吸附儀、霍氏紅外線儀、循環伏安儀等儀器分析,並以靜態吸附系統量測經幾丁聚醣、硝酸改質之活性碳纖布對於硝酸銅水溶液銅離子的吸附效能。在不同偏電位下電吸附平衡量亦加以探討。

實驗結果顯示,活性碳纖布表面官能基為影響銅離子吸附效能因素之一。經幾丁聚醣改質後之活性碳纖布吸附金屬銅離子吸附/電吸附效能有明顯提升趨勢。其原因為經幾丁聚醣改質後的活性碳纖布含少量的胺基於碳纖布上,具有螯合的作用。而於硝酸銅水溶液中加入少量錯合劑時活性碳纖維布吸附/電吸附效能較未加入錯合劑者為佳。實驗結果亦顯示電吸附可有效提升吸附量。活性碳纖維布對銅離子的吸附/電吸附量遵循Langmuir等溫式。在施加0.3V電位下活性碳纖維布對銅離子的平衡吸附量24.74 mg/g,約是未施加電壓時的二倍。
The aim of this thesis is to investigate adsorption and electrosorption of copper ion from wastewater on variously activated carbon fibers (ACFs) cloths. The commercial polyacrylonitrile-based ACFs cloth was modified by nitric acid or impregnated by chitosan solution. Adsorption/electrosorption capacities of copper ions were also studied as dilute complexing agents, such as EDTA and sodium citrate, existed in wastewater. The modified ACFs cloths were characterized using nitrogen adsorption, FTIR, and cyclic voltammetry. A static state adsorption system was designed to measure adsorption/electrosorption capacity of copper ion on the ACFs cloth. The adsorption/electrosorption capacity of ACFs cloth with different bias potentials were measured, and the electrosorption isotherms were also investigated.
Experimental results showed that surface functional groups of ACFs cloth was one of key factors on adsorption efficiency. Activated carbon cloth modified by chitosan enhanced adsorption/electrosorption efficiency. The cause was attributed that the ACFs cloth modified by chitosan contained amino groups for chelating copper ions. In addition, adsorption/electrosorption capacity of copper ion on ACFs increased as dilute complexing agent existed in wastewater. Experimental results also revealed that electrosorption can effectively increase the adsorption capacity. The adsorption/electrosorption of copper ion on carbon cloth followed Langmuir isotherms. The equilibrium adsorption capacity at 0.3 V was 24.74 mg/g, which was nearly two times higher than that at open circuit.
中文摘要........................................i
英文摘要.......................................ii
致謝..........................................iii
目錄...........................................iv
表目錄.........................................vi
圖目錄........................................vii
一、前言........................................1
二、文獻回顧....................................4
2.1活性碳纖布製造與分類及其應用.................5
2.2活性碳纖布的表面性質.........................9
2.2.1比表面積...................................9
2.2.2孔隙大小分佈...............................9
2.2.3官能基.....................................9
2.2.4改質方法(幾丁聚醣、硝酸)..................13
2.3吸附與脫附..................................15
2.3.1等溫吸附平衡曲線模式......................16
2.3.2吸附動力分析..............................17
2.4電吸附原理..................................19
2.5碳材料的電吸附之相關文獻....................21
三、實驗方法及步驟.............................24
3.1 原料試劑...................................24
3.2實驗設備....................................26
3.3樣品的製備..................................26
3.3.1活性碳纖布前處理..........................26
3.3.2以幾丁聚醣改質活性碳纖布..................26
3.3.3以硝酸改質活性碳纖布......................27
3.4活性碳纖維之性質分析........................27
3.4.1活性碳纖布表面官能基定性分析..............27
3.4.2比表面積、孔徑分佈、孔體積量測............27
3.4.3元素分析(EA)..............................28
3.4.4活性碳纖布表面pH值........................28
3.4.5掃描式電子顯微鏡(SEM).....................28
3.4.6熱重分析 (TGA)............................28
3.4.7實驗流程規劃圖............................29
3.5吸附金屬銅離子之實驗........................30
3.5.1靜態吸附/電吸附實驗的裝置.................30
3.5.2重金屬溶液標準曲線之繪製..................32
3.5.3 經由幾丁聚醣改質前後活性碳纖布吸附實驗步驟.............................................32
3.5.4 經由幾丁聚醣改質前後活性碳纖布電吸附實驗步驟.............................................33
四、結果與討論.................................34
4.1活性碳纖布基本性質量測......................34
4.1.1活性碳纖布表面特性觀測....................34
4.1.2 活性碳纖布比表面積及孔徑分佈量測.........39
4.1.3活性碳纖布元素分析........................43
4.1.4 活性碳纖布表面官能基定性分析.............43
4.1.5活性碳纖布酸鹼性分析......................44
4.1.6 活性碳纖布熱性質探討.....................49
4.1.7電化學特性分析............................49
4.2 未改質之活性碳纖布.........................53
4.2.1 溶液濃度對硝酸銅吸附質之影響.............53
4.2.2 不同電壓對硝酸銅吸附之影響...............53
4.2.3 未施加電位吸附硝酸銅與硝酸銅+EDTA或檸檬酸之比較...........................................54
4.2.4 施加0.3V電位吸附硝酸銅與硝酸銅+EDTA之比較.............................................54
4.2.5 有無施加電位對吸附硝酸銅+EDTA之比較......60
4.2.6濃度與導電度之關係圖......................60
4.2.7pH值的影響................................65
4.3 以幾丁聚醣、硝酸改質之活性碳纖布...........71
4.3.1施加電位時,改質前後活性碳纖布吸附金屬銅離子比較...........................................71
4.3.2 pH值不同時,改質前後活性碳纖布吸附金屬銅離子之比較.......................................72
4.3.3濃度與導電度之關係圖......................72
4.4等溫吸附模式迴歸探討........................77
4.5吸附動力之探討..............................78
五、結論.......................................88
參考文獻.......................................90
自述...........................................95

表目錄
表1. 放流水標準中有關重金屬濃度的水質限值.......3
表2. 各種孔隙的分類.............................5
表3.活性碳纖維材料的分類........................8
表4. 活性碳纖布(ACF)的一些性質..................8
表5. 軟硬酸鹼理論官能基........................11
表6. 含碳材料之改質方法........................11
表7. 物理吸附與化學吸附特性之差異性............15
表8. 活性碳纖維型錄............................24
表9. 活性碳材料的各種性質......................25
表10. 活性碳纖布表面特性描述...................40
表11. 活性碳纖布元素分析比較...................45
表12. 活性碳纖布表面pH值.......................48
表13.活性碳纖布等溫吸附與電吸附曲線擬合參數....79
表14.活性碳纖布等溫吸附與電吸附曲線擬合參數qe值與實驗值qe之比較.................................80
表15.活性碳纖布改質前後之一階及二階動力吸附參數.............................................81


















圖目錄
圖1. 活性碳纖布(ACF)和粒狀活性碳的孔洞結構示意圖..............................................7
圖2. PAN系列活性碳纖維布之表面官能基...........12
圖3. 石墨層(grapheme layer)的硬性和軟性官能基之示意圖...........................................12
圖4. 幾丁質(chitin)之化學結構..................14
圖5. 幾丁聚醣(chitosan)之化學結構..............14
圖6. 纖維素(cellulose)之化學結構...............14
圖7. 電解質水溶液中不帶電(a)和帶電(b)活性碳表面結構狀況示意圖...................................20
圖8. 不同電荷的分子/離子吸附量隨電位的變化示意圖.............................................20
圖9. 實驗規畫流程圖............................29
圖10. 靜態吸附裝置示意圖.......................31
圖11.水溶液中活性碳纖布表面電位受pH影響之分佈圖.............................................36
圖12. 活性碳纖布SEM表面觀測與EDS表面元素分析...37
圖13. 吸附銅離子之活性碳纖布SEM表面觀測與EDS表面元素分析.......................................38
圖14. 活性碳纖布Mesopores孔徑分佈..............41
圖15. 活性碳纖布Micropores孔徑分佈.............42
圖16. 以幾丁聚醣改質前後之活性碳纖布FTIR表面官能基定性分析.....................................46
圖17. 以硝酸改質前後之活性碳纖布FTIR表面官能基定性分析.........................................47
圖18. 活性碳纖布AW1104與經由幾丁聚醣改質之TGA圖.............................................50
圖19. 幾丁聚醣(Chitosan)的粉末之TGA圖..........51
圖20. 掃描速率分別為50、100、200mV/sec之活性碳纖布循環伏安圖...................................52
圖21. 活性碳纖布在不同濃度硝酸銅溶液中對銅離子之吸附量.........................................56
圖22. 活性碳纖布在不同電壓下吸附硝酸銅溶液情形.............................................57
圖23. 未施加電位,EDTA、檸檬酸錯合劑對活性碳纖布吸附硝酸銅之比較...............................58
圖24. 施加0.3V電位時,EDTA螫合劑對活性碳纖布吸附硝酸銅之比較...................................59
圖25. 在不同電壓對含相同比例EDTA與Cu+2溶液中吸附銅離子比較.....................................61
圖26. 活性碳纖布於電壓0.3V時,其銅離子的吸附量與導電度關係圖...................................62
圖27. 電壓0.3V,Cu+2+EDTA莫耳比為10:1,其吸附量與導電度關係圖...................................63
圖28. 電壓0.3V,Cu+2+檸檬酸莫耳比為10:1,其吸附量與導電度關係圖.................................64
圖29. 在不同pH值,EDTA錯合劑對活性碳纖布吸附銅離子量影響比較...................................67
圖30. 在不同pH值,檸檬酸錯合劑對活性碳纖布吸附銅離子量影響比較.................................68
圖31. pH值對活性碳纖布吸附硝酸銅溶液中銅離子的影響.............................................69
圖32. 在不同pH值對含不同錯合劑與硝酸銅溶液中吸附銅離子量的比較.................................70
圖33. 改質前後對活性碳纖布吸附硝酸銅溶液中金屬銅離子吸附量之比較...............................73
圖34. 改質前後對活性碳纖布吸附硝酸銅溶液中金屬銅離子吸附量之比較...............................74
圖35. 以幾丁聚醣改質,pH值不同對含硝酸銅溶液銅離子吸附量之比較.................................75
圖36. 以幾丁聚醣改質於電壓0.3V時,其銅離子吸附量與導電度關係圖.................................76
圖37. 未施加電位活性碳纖布加入錯合劑前後之Freundlich.....................................82
圖38. 未施加電位活性碳纖布改質前後之Langmuir...82
圖39. 施加0.3V電位活性碳纖布加入錯合劑前後之Langmuir.......................................83
圖40. 施加0.3V電位活性碳纖布改質前後之Langmuir.......................................83
圖41. 未施加電位活性碳纖布改質前後擬一階動力參數.............................................84
圖42. 未施加電位活性碳纖布加入錯合劑前後擬一階動力參數.........................................84
圖43. 施加電位活性碳纖布改質前後擬一階動力參數.............................................85
圖44. 施加電位活性碳纖布加入錯合劑前後擬一階動力參數...........................................85
圖45. 未施加電位活性碳纖布改質前後擬二階動力參數.............................................86
圖46. 未施加電位活性碳纖布加入錯合劑前後擬二階動力參數.........................................86
圖47. 施加電位活性碳纖布改質前後擬二階動力參數.............................................87
圖48. 施加電位活性碳纖布加入錯合劑前後擬二階動力參數...........................................87
1.經濟部工業局工業污染防治技術服務團,1994,工業污染防治技術手冊-7-工業廢水活性碳處理,經濟部工業局工業污染防治技術服務團、財團法人中國技術服務社出版。
2.粘駿楠,2002,碳電極之氧官能基對電化學電容之影響,國立成功大學,化學工程系研究所碩士論文。
3.王曾輝、高普生,1991,碳素材料,初版,華東化工學院出版社出版。
4.Crow, D. R., 1998, 電化學的原理及應用,譯者:黃進益,初版,高立圖書有限公司。
5.胡啟章,2002,電化學原理與方法,初版,五南圖書出版股份有限公司。
6.田福助,2004,電化學-原理與應用,八版,高立圖書有限公司。
7.Afkhami, A. and B. Conway, 2002, “Investigation of removal of Cr(VI), Mo(VI), W(VI),V(IV), and V(V) oxy-ions from industrial waste-waters by adsorption and electrosorption at high-area carbon cloth,” Journal of Colloid and Interface Science, Vol. 251, pp. 248-255.
8.Afkhami, A., 2003, “Adsorption and electrosorption of nitrate and nitrite on high-area carbon cloth: an approach to purification of water and waste-water samples,” Carbon, Vol. 41, pp.1390-1328.
9.Ahmadpour, A. and D. D. Do, 1996, “The preparation active carbons from coal by chemical and physical activation,” Carbon, vol.34, pp.471-479.
10.Ahn, H. J., J. H. Lee, Y. Jeong, J. H. Lee, C. S. Chi and H. J. Oh, 2007, “Nanostructured carbon cloth electrode for desalination from aqueous solutions,” Materials science and engineering A, Vol. 449-451, pp. 841-845.
11.Alfarra, A., E. Frackowiak and F. Béguin, 2002, “Mechanism of lithium electrosorption by activated carbons,” Electrochimica Acta, Vol.47, pp. 1545-1553.
12.Alfarra, A., E. Frackowiak and F. Beguin, 2004, “The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons,” Applied Surface Science, Vol. 228, pp. 84-92.
13.Bán, A., Sahäfer, A. and Wendt, H., 1998, “Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents”, Journal of Applied Electrochemistry, Vol. 28, pp. 227-236.
14.Brasquet, C. and P. L. Cloirec, 1997, “Adsorption onto activated carbon fibers: application to water and air treatments,” Carbon, Vol. 35, pp. 1307-1313.
15.Brennsteiner A., J. W. Zondlo, A. H. Stiller, P. G. Stansberry, D. Tian, and Y. Xu ,1997, “Environmental Pollution Control Devices Based on Novel Forms of Carbon: Heavy Metals,” Energy & Fuels,Vol.11, pp.348-353.
16.Chen, J. P. and S. Wu, 2004, “Acid/base-treated activated carbons : characterization of functional groups and metal adsorptive properties,” Langmuir, Vol. 20, pp. 2233 -2242.
17.Chung, C. and Y. Ku, 1998, “The adsorption characteristics of EDTA-Chelated copper ion by activated carbon in a column test,” Separation Science and Technology, Vol.33, pp.483-501.
18.Conway, B. E., 1999, Electrochemical supercapacitors: scientific fundamentals and technological applications, New York, Plenum Press.
19.Deng, S., R. Bai and J. P. Chen, 2003, “Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers,” Journal of Colloid and Interface Science, Vol. 260, pp.265-272.
20.Donald L. Pavia, Gary M. Lampman, George S. Kriz, 2001, Introduction to spectroscopy, Third edition, Chap. 2, pp.26.
21.Farmer, J. C., D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, 1996, “Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes”, Journal of the Electrochemical Society, Vol.143, No.1 pp.159-169.
22.Farmer, J. C., D.V. Fix, G. V. Mack, R.W. Pekala and J.F. Poco, 1996, “Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes” Journal of Applied Electrochemistry, Vol. 26, pp.1007-1018 .
23.Frackowiak, E. and F. Béguin, 2001, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon, Vol. 39, pp. 937-950.
24.Han, Y. H., X. Quan, S. Chen, H. Zhao, C. Cui and Y. Zhao, 2006, “Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution,” Journal of Colloid and Interface Science, Vol. 299, pp. 766-771.
25.Han, Y., X. Quan, S. Chen, S. Wang and Y. Zhang, 2007, “Electrochemical enhancement of adsorption capacity of activated carbon fibers and their surface physicochemical characterizations,” Electrochimica Acta, Vol. 52, pp.3075-3081.
26.Heijman S. G. J., Van Paassen A. M., Van Der Meer W. G. J. and Hopman R., 1999, “adsorptive removal of natural organic matter during drinking water treatment,” Water Science and Technology, Vol. 40, pp. 183-190.
27.Hsieh, C. T. and H. Teng, 2002, “Influence of oxygen treatment on electric double - layer capacitance of activated carbon fabrics,” Carbon, Vol.40, pp.667-674.
28.Jankowska, H., A. Swiatkowski, J. Choma, and T. J. Kemp, 1991, Active carbon, New York, E. Horwood.
29.Kabra, K., R. Chaudhary and R.L. Sawhney, 2008, “Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal–citric acid complexes ,” Journal of Hazardous Materials, Vol. 155, pp.424-432.
30.Kim, H.S., H. Lee, K. S. Han, J. H. Kim, M. S. Song, M. S. Park, J. Y. Lee, and J. K. Kang, 2005, “Hydrogen storage in Ni nanoparticle-despersed multiwalled carbon nanotubes,” Journal Physical Chemistry B, Vol. 109, pp. 8983-8986.
31.Mayne, P. J., R. Shackleton, 1985, “Adsorption on packed bed electrodes,” Journal of Applied Electrochemistry, Vol. 15, pp.745-754.
32.Mochida, I., Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa and A. Yasutake, 2000, “Removal of SOx and NOx over activated carbon fibers,” Carbon, Vol. 38, pp. 227-239.
33.Mohllner, D. M., M. Karolczak, 1982, “Congruence of Electrodsoption with respect to the Electlical Varlable,” The Journal of Physical Chemistry, Vol. 86, pp.2838-2840.
34.Nadeem, M., A. Mahmood, S. A. Shahid, S. S. Shah, A. M. Khalid and G. McKay, 2006, “Sorption of lead from aqueous solution by chemically modified carbon adsorbents,” Journal of Hazardous Materials, Vol. 138, pp. 604-613.
35.Niu J., B. E. Conway, 2003, “Adsorption of organics onto an high-area C-cloth electrode from organic solvents and organic solvent/water mixtures,” Journal of Electroanalytical Chemistry, Vol.546, pp.59-72.
36.Oh, H. J., J. H. Lee, H. J. Ahn, Y. Jeong, Y. J. Kim and C. S. Chi, 2006, “Nanoporous activated carbon cloth for capacitive deionization of aqueous solution,” Thin Solid Films, Vol. 515, pp. 220-225.
37.Park, K. K., J. B. Lee, P. Y. Park, S.W. Yoon, J. S. Moon,H.M. Eum and C.W. Lee, 2007, “Development of a carbon sheet electrode for electrosorption,” Desalination, Vol.206, pp.86-91.
38.Park, S. J., B. J. Park and S. K. Ryu, 1999, “Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr (VI) adsorption ,” Carbon, Vol. 37, pp. 1223-1226.
39.Pearson, R. G., 1963, “Hard and Soft Acids and Bases,” Journal of the American Chemical Society, Vol. 85, pp.3533-3539.
40.Pearson, R., 1968, “Hard and Soft Acids and Bases HSAB.1. Fundamental Principles,” Journal of Chemical Education, Vol. 45, pp.581-589.
41.Peters, R. W. and Y. Ku, 1985, “Batch precipitation studies for heavy metal removal by sulfide precipitation,” AIChE Symposium Series, Vol. 81, pp. 9-27.
42.Polovina, M. J., and B. Stojanovic, 1993, “Adsorption of ammonian on activated carbon Fiber,” Journal of the Serbian Chemical Society, Vol. 58, pp.765-770.
43.Rong, C. and H. Xien, 2005, “Electrosorption of thiocyanate anions on active carbon felt electrode in dilute solution,” Journal of Colloid and Interface Science, Vol. 290, pp.190-195.
44.Ryu, S. K., H. Jin, D. Gondy, and P. Ehrburger, 1993, “Activation of carbon
fibers by steam and carbon dioxide,” Carbon, Vol. 31 , pp.841-842.
45.Shahidi, F., J. K. V. Arachchi, and Y. J. Jeon, 1999, “Food applications of chitin and chitosan,” Trends Food Science Technology, Vol. 10, pp. 37-51.
46.Valente Nabais J. M., P. J. M. Carrott, M. M. L. Ribeiro Carrott, J. A. Menéndez, 2004, “Preparation and modification of activated carbon fibers by microwave heating,” Carbon, Vol.42, pp.1315-1320.
47.Wang, S., D. Z. Wang, L. J. Ji, Q. Gong, Y. F. Zhu and J. Liang, 2007, “Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes,” Separation and Purification Technology, Vol. 58, pp.12-16.
48.Welgemoed, T. J. and C. F. Schutte, 2005, “Capacitive deionization technologyTM: an alternative desalination solution,” Desalination, Vol. 183, pp. 327-340.
49.Xu, Y., J.W. Zondlo, H. O. Finklea, A. Brennsteiner, 2000, “Electrosorption of uranium on carbon fibers as a means of environmental remediation,” Fuel Processing Technology, Vol. 68, pp. 189-208.
50.Yang, K. L., S. Yiacoumi and C. Tsouris, 2003, “Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry,” Journal of Elctroanalytical Chemistry, Vol. 540, pp. 159-167.
51.Yang, K. L., T. Y. Ying, S. Yiacoumi, C. Tsouris and E. S. Vittoratos, 2001, “ Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model,” Langmuir, Vol. 17, pp. 1961-1969.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top