|
[1] W. Arendt, {\it Vector-valued Laplace transforms and Cauchy problems}, Israel J. Math, {\bf 59}(1987), 327-352 [2] Arendt and H. Kellerman, {\it Integrated solutions of Volterra integrodifferential equations and applications}, in Volterra Integrodifferential Equations in Banach Spaces, Pitman Res. Notes in Math. {\bf 190}(1989), 21-51. [3] W. Arendt, F. R\"{a}biger, and A. Sourour; {\it Spectral properties of operator equation} $AX+XB=Y$, Quart. J. Math. Oxford Ser.(2) {\bf 45}(1994), 133-149. [4] H. Berens, {\it Interpolationsmethoden sur Behandlung von Approximationsprozessen auf Banachraumen}, in book Lect. Notes Math. {\bf 64}, Springer-Verlag, Berlin-Heidelberg-New York, 1968. [5] D. W. Brewer, {\it The differentiability with respect to a parameter of the solution of a linear abstract Cauchy problem}, SIAM J. Math. Anal. {\bf 13}(1982), 607-620. [6] P.L. Butzer and H. Berens, {\it Semi-Groups of Operators and Approximation}, Springer-Verlag, New York, 1967. [7] P. L. Butzer and R. J. Nessel, {\it Fourier Analysis and Approximation}, Vol {\bf 1}, Birkhauser, Basel/Academic Press, New York, 1971. [8] P. L. Butzer and A. Gessinger, {\it Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equation: A survey}, Contemp. Math., {\bf 190}(1995), 67-94 [9] P. L. Butzer and S. Pawelke, {\it Semigroups and resolvent operators}, Arch. Rational Mech. Anal. {\bf 30}(1968), 127-147. [10] J.-C. Chang and S.-Y. Shaw, {\it Rates of approximation and ergodic limits of resolvent families}, Arch. Math. {\bf 66}(1996), 320-330. [11] J.-C. Chang and S.-Y. Shaw, {\it Optimal and Non-optimal Rates of Approximation for Integrated Semigroups and Cosine Functions}, J. Approx. Theory, {\bf 90}(1997), 200-223. [12] Ph Clement [13] ulhon, {\it Suites d''operateurs a puissances bornees dans les espaces ayant la propriete de Dunford-Pettis}, Publ. Math. Paris VII, {\bf 26}(1987), 141-153. [14] O. V. Davydov, {\it Some condensation theorem for semigroup operators}, Manuscripta Math. {\bf 79}(1993), 435-446. [15] W. Desch and J. Pr\"uss, {\it Counterexamples for abstract linear Volterra equations}, J. Integral Equations Appl. {\bf 5}(1993), 29-45 [16] J. S. Gibson and L. G. Clark, {\it Sensitivity analysis for a class of evolution equations}, J. Math. Anal. Appl., {\bf 58}(1977), 22-31. [17] G. Gripenberg, O. London and O. Staffens, {\it Volterra Integral and Functional Equations}, Cambridge university press, New York, 1990. [18] E. Hille and R. S. Phillips, {\it Functional Analysis and Semi-groups}, Amer. Math. Soc. Colloq. Publ., {\bf 31}, Amer. Math. Soc., Providence, R.I., 1957. MR {\bf 19}:664d [19] Y. Katznelson, {\it An Introduction to Harmonic Analysis}, Dover, New York, 1976. [20] S. G. Krein, Ju. I. Petunin, and E. M. Semenov, {\it Interpolation of Linear Operators}, Transl. Math. Monogr., Vol {\bf 54}, Amer. Math. Soc., Providence, R.I. 1982. [21] Y.-C. Li and S.-Y. Shaw, $N$-{\it times integrated $C$-semigroups and the abstract Cauchy problem}, Taiwanese J. Math. {\it 1}(1997), 75-102. [22] C. Lizama, {\it On Volterra equations associated with a linear operator}, Proc. Amer. Math. Soc. {\it 118}(1993), 1159-1166. [23] H. P. Lotz, {\it Uniform convergence of operators on $L^\infty$ a2d similar spaces}, Math, Z. {\bf 190}(1985), 207-220. [24] J.M.A.M. van Neerven, {\it The Adjoint of a Semigroup of Linear Operators}, Lecture Notes in Math., {\bf 1529}, Springer-Verlag, Berlin-Heidelberg-New York, 1992. [25] H. Oka, {\it Linear Volterra equations and integrated solution families}, Semigroup Forum, {\bf 53}(1996), 278-297. [26] R. E. A. C. Paley and N. Wiener, {\it Fourier Transform in the Complex Domain}, Amer. Math. Soc., Providence, R. I. 1934, 73. [27]J. Pr\"{u}ss; {\it Bounded Solutions of Volterra Equations}; SIAM J. math. anal. {\bf 19}(1988); 133-149. [28]J. Pr\"{u}ss; {\it Evolutionary Integral Equations and Applications}, Birkh\"{a}user, Basel, 1993. \noindent [29] S. Y.Shaw and S.C. Lin, {\it On the operator equation $AX=q$ and} $SX-XT=Q$, J. Funct. Anal. {\bf 77}(1988), . [30] S.-Y. Shaw, {\it On $w^*$-continuous cosine operator functions}, J. Funct. Anal. {\bf 66}(1986), 73-95. [31] S.-Y. Shaw, {\it Asymptotic behavior of pseudo-resolvents on some Grothendieck spaces}, Publ. RIMS, Kyoto Univ. {\bf 24}(1988), 277-282. [32] S.-Y. Shaw, {\it Uniform convergence of ergodic limits and approximate solutions}, Proc. Amer. Math. Soc. {\bf 114}(1992), 405-411. [33] S.-Y. Shaw, {\it Grothendieck space}, Encyclopaedia of Mathematics, supplement I, Kluwer Academic Publishers, 1997, 278. [34] S.-Y. Shaw and Y.-C. Li, {\it On $n$-times integrated $C$-cosine functions, Evolution Equations}, Marcel Dekkar, 1995, 393-406. [35] J. A. Van Casteren, {\it Generators of Strongly Continuous Semigroups}, Pitman, London, 1985. [36] Vu Quac Phong; {\it The operator equation $AX-XB=C$ with unbounded operator $A$ and $B$ and related abstract Cauchy problems}, Math. Z. {\bf 208}(1991), 567-588. [37] Vu Quac Phong, {\it On the spectrum, complete trajectories, and asymptotic stability of linear semidynamical systems}, J. Differential Equations {\bf 105}(1993), 30-45. [38] Vu Quac Phong and E. Sch\"{u}er, {\it The operator equation $AX-XB=C$, admissibility, and asymptotic behavior of differential equation}, J. Differential Equation {\bf 145}(1998), 394-419. [39] Vu Quac Phong and E. Sch\"{u}er, {\it The operator equation $AX-X{\cal D}^2=-\delta_0$ and second order differential equation in Banach space}, Progress in Nonlinear differential equations and their applications, Birkh\"{a}er, 2000, p.352-363. [40] Q. Zheng, {\it Strongly Continuous Semigroups of Linear Operators}, Huazhong University of Science and Technology Press, Wuhan, 1994.
|