跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉翔
論文名稱:摺合型積分方程之收斂性、可微性與可容許空間的研究
指導教授:蕭勝彥
學位類別:博士
校院名稱:國立中央大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:97
中文關鍵詞:預解算子族可容許空間算子半群
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文可分為兩個部份:第一個部份是探討Volterra 積分方程之預解算子族在原點的收斂性及參數可微性;第二個部份則研究摺合型積分方程的可容許空間與Lyapunov 算子方程的可解性之聯繫。
第二章給出了n次積分預解算子族的最佳與非最佳收斂及其敏銳,並將之應用於n次積分半群及n次積分餘弦函數。
在第三章中我們定義A規則逼近過程,並建立了決定其飽和度與飽和類之一般流程。應用此流程於n次積分預解算子族而得到第二章的一些結果。
第四章則研究Volterra 積分方程之參數可微性。在一些假設之下,我們證明了Volterra 積分方程解的參數可微性蘊含其預解算子族的參數可微性。
第五章首先給出了一類Lyapunov 算子方程有唯一解的充要條件。其次證明了摺合型積分方程之可容許空間與Lyapunov算子方程之可解性間的等價關係。最後給出摺合算子生成解析半群之充要條件,並引用一個已知的定理給出Lyapunov算子方程解的公式。
封面
Chapter 1. Introduction
Chapter 2. Rates of Local Ergodic Limits of N-times Integrated Solution Families
Chapter 3. Convergence Rates of Regulized Approximation Process
Chapter 4. The Differentiablity with respect to a Parameter of the Solution of a Linear Abstract Volterra Equation
Chapter5 Admissible Spaces of Convolution Integral Equations and the Solvability of Operator Equations of Lyopunov Type
References
[1] W. Arendt, {\it Vector-valued Laplace transforms and Cauchy problems}, Israel J. Math, {\bf 59}(1987), 327-352
[2] Arendt and H. Kellerman, {\it Integrated solutions of Volterra integrodifferential equations and applications}, in Volterra Integrodifferential Equations in Banach Spaces, Pitman Res. Notes in Math. {\bf 190}(1989), 21-51.
[3] W. Arendt, F. R\"{a}biger, and A. Sourour; {\it Spectral properties of operator equation} $AX+XB=Y$, Quart. J. Math. Oxford Ser.(2) {\bf 45}(1994), 133-149.
[4] H. Berens, {\it Interpolationsmethoden sur Behandlung von Approximationsprozessen auf Banachraumen}, in book Lect. Notes Math. {\bf 64}, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
[5] D. W. Brewer, {\it The differentiability with respect to a parameter of the solution of a linear abstract Cauchy problem}, SIAM J. Math. Anal. {\bf 13}(1982), 607-620.
[6] P.L. Butzer and H. Berens, {\it Semi-Groups of Operators and Approximation}, Springer-Verlag, New York, 1967.
[7] P. L. Butzer and R. J. Nessel, {\it Fourier Analysis and Approximation}, Vol {\bf 1}, Birkhauser, Basel/Academic Press, New York, 1971.
[8] P. L. Butzer and A. Gessinger, {\it Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equation: A survey}, Contemp. Math., {\bf 190}(1995), 67-94
[9] P. L. Butzer and S. Pawelke, {\it Semigroups and resolvent operators}, Arch. Rational Mech. Anal. {\bf 30}(1968), 127-147.
[10] J.-C. Chang and S.-Y. Shaw, {\it Rates of approximation and ergodic limits of resolvent families}, Arch. Math. {\bf 66}(1996), 320-330.
[11] J.-C. Chang and S.-Y. Shaw, {\it Optimal and Non-optimal Rates of Approximation for Integrated Semigroups and Cosine Functions}, J. Approx. Theory, {\bf 90}(1997), 200-223.
[12] Ph Clement
[13] ulhon, {\it Suites d''operateurs a puissances bornees dans les espaces ayant la propriete de Dunford-Pettis}, Publ. Math. Paris VII, {\bf 26}(1987), 141-153.
[14] O. V. Davydov, {\it Some condensation theorem for semigroup operators}, Manuscripta Math. {\bf 79}(1993), 435-446.
[15] W. Desch and J. Pr\"uss, {\it Counterexamples for abstract linear Volterra equations}, J. Integral Equations Appl. {\bf 5}(1993), 29-45
[16] J. S. Gibson and L. G. Clark, {\it Sensitivity analysis for a class of evolution equations}, J. Math. Anal. Appl., {\bf 58}(1977), 22-31.
[17] G. Gripenberg, O. London and O. Staffens, {\it Volterra Integral and Functional Equations}, Cambridge university press, New York, 1990.
[18] E. Hille and R. S. Phillips, {\it Functional Analysis and Semi-groups}, Amer. Math. Soc. Colloq. Publ., {\bf 31}, Amer. Math. Soc., Providence, R.I., 1957. MR {\bf 19}:664d
[19] Y. Katznelson, {\it An Introduction to Harmonic Analysis}, Dover, New York, 1976.
[20] S. G. Krein, Ju. I. Petunin, and E. M. Semenov, {\it Interpolation of Linear Operators}, Transl. Math. Monogr., Vol {\bf 54}, Amer. Math. Soc., Providence, R.I. 1982.
[21] Y.-C. Li and S.-Y. Shaw, $N$-{\it times integrated $C$-semigroups and the abstract Cauchy problem}, Taiwanese J. Math. {\it 1}(1997), 75-102.
[22] C. Lizama, {\it On Volterra equations associated with a linear operator}, Proc. Amer. Math. Soc. {\it 118}(1993), 1159-1166.
[23] H. P. Lotz, {\it Uniform convergence of operators on $L^\infty$ a2d similar spaces}, Math, Z. {\bf 190}(1985), 207-220.
[24] J.M.A.M. van Neerven, {\it The Adjoint of a Semigroup of Linear Operators}, Lecture Notes in Math., {\bf 1529}, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[25] H. Oka, {\it Linear Volterra equations and integrated solution families}, Semigroup Forum, {\bf 53}(1996), 278-297.
[26] R. E. A. C. Paley and N. Wiener, {\it Fourier Transform in the Complex Domain}, Amer. Math. Soc., Providence, R. I. 1934, 73.
[27]J. Pr\"{u}ss; {\it Bounded Solutions of Volterra Equations}; SIAM J.
math. anal. {\bf 19}(1988); 133-149.
[28]J. Pr\"{u}ss; {\it Evolutionary Integral Equations and Applications}, Birkh\"{a}user, Basel, 1993.
\noindent [29] S. Y.Shaw and S.C. Lin, {\it On the operator equation $AX=q$ and} $SX-XT=Q$, J. Funct. Anal. {\bf 77}(1988),
.
[30] S.-Y. Shaw, {\it On $w^*$-continuous cosine operator functions}, J. Funct. Anal. {\bf 66}(1986), 73-95.
[31] S.-Y. Shaw, {\it Asymptotic behavior of pseudo-resolvents on some Grothendieck spaces}, Publ. RIMS, Kyoto Univ. {\bf 24}(1988), 277-282.
[32] S.-Y. Shaw, {\it Uniform convergence of ergodic limits and approximate solutions}, Proc. Amer. Math. Soc. {\bf 114}(1992), 405-411.
[33] S.-Y. Shaw, {\it Grothendieck space}, Encyclopaedia of Mathematics, supplement I, Kluwer Academic Publishers, 1997, 278.
[34] S.-Y. Shaw and Y.-C. Li, {\it On $n$-times integrated $C$-cosine functions, Evolution Equations}, Marcel Dekkar, 1995, 393-406.
[35] J. A. Van Casteren, {\it Generators of Strongly Continuous Semigroups}, Pitman, London, 1985.
[36] Vu Quac Phong; {\it The operator equation $AX-XB=C$ with unbounded
operator $A$ and $B$ and related abstract Cauchy problems}, Math. Z. {\bf 208}(1991), 567-588.
[37] Vu Quac Phong, {\it On the spectrum, complete trajectories, and asymptotic stability of linear semidynamical systems}, J. Differential Equations {\bf 105}(1993), 30-45.
[38] Vu Quac Phong and E. Sch\"{u}er, {\it The operator equation $AX-XB=C$, admissibility, and asymptotic behavior of differential equation}, J. Differential Equation {\bf 145}(1998), 394-419.
[39] Vu Quac Phong and E. Sch\"{u}er, {\it The operator equation $AX-X{\cal D}^2=-\delta_0$ and second order differential equation in Banach space}, Progress in Nonlinear differential equations and their applications, Birkh\"{a}er, 2000, p.352-363.
[40] Q. Zheng, {\it Strongly Continuous Semigroups of Linear Operators}, Huazhong University of Science and Technology Press, Wuhan, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top