|
1.Placzek G. Rayleigh Streeung und Raman Effekt, vol. 6. Hdb. DerRadiologie, 1934.1 2.Gardiner DJ, Beroggi GEG, Graves PR. Practical Raman Spectroscopy 1989.1 3.Wikipedia (http://en.wikipedia.org/wiki/Raman_scattering)1 4.Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999; 99(10): 2957-+.3 5.Fleischm.M, Hendra PJ, McQuilla.Aj. RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE. Chem. Phys. Lett. 1974; 26(2): 163-166.3 6.Jeanmaire DL, Vanduyne RP. SURFACE RAMAN SPECTROELECTROCHEMISTRY .1. HETEROCYCLIC, AROMATIC, AND ALIPHATIC-AMINES ADSORBED ON ANODIZED SILVER ELECTRODE. J. Electroanal. Chem. 1977; 84(1): 1-20.4 7.Kerker M, Siiman O, Bumm LA, Wang DS. SURFACE ENHANCED RAMAN-SCATTERING (SERS) OF CITRATE ION ADSORBED ON COLLOIDAL SILVER. Appl. Optics 1980; 19(19): 3253-3255.4 8.Wang DS, Kerker M. ENHANCED RAMAN-SCATTERING BY MOLECULES ADSORBED AT THE SURFACE OF COLLOIDAL SPHEROIDS. Phys. Rev. B 1981; 24(4): 1777-1790.4 9.Zeman EJ, Schatz GC. AN ACCURATE ELECTROMAGNETIC THEORY STUDY OF SURFACE ENHANCEMENT FACTORS FOR AG, AU, CU, LI, NA, AL, GA, IN, ZN, AND CD. J. Phys. Chem. 1987; 91(3): 634-643.4 10.Inoue M, Ohtaka K. SURFACE ENHANCED RAMAN-SCATTERING BY METAL SPHERES .1. CLUSTER EFFECT. J. Phys. Soc. Jpn. 1983; 52(11): 3853-3864.4 11.Xu HX, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 2000; 62(3): 4318-4324.4 12.Knoll W. Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 1998; 49: 569-638.5 13.Moskovits M, Dilella DP, Maynard KJ. SURFACE RAMAN-SPECTROSCOPY OF A NUMBER OF CYCLIC AROMATIC-MOLECULES ADSORBED ON SILVER- SELECTION-RULES AND MOLECULAR-REORIENTATION. Langmuir 1988; 4(1): 67-76.5 14.Chu P, Mills DL. Electromagnetic response of nanosphere pairs: Collective plasmon resonances, enhanced fields, and laser-induced forces. Phys. Rev. B 2008; 77(4).5 15.Ko H, Singamaneni S, Tsukruk VV. Nanostructured Surfaces and Assemblies as SERS Media. Small 2008; 4(10): 1576-1599.5 16.Otto A. The ''chemical'' (electronic) contribution to surface-enhanced Raman scattering. Journal of Raman Spectroscopy 2005; 36(6-7): 497-509.6 17.Jiang JD, Burstein E, Kobayashi H. RESONANT RAMAN-SCATTERING BY CRYSTAL-VIOLET MOLECULES ADSORBED ON A SMOOTH GOLD SURFACE - EVIDENCE FOR A CHARGE-TRANSFER EXCITATION. Physical Review Letters 1986; 57(14): 1793-1796.6 18.Arenas JF, Woolley MS, Tocon IL, Otero JC, Marcos JI. Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states. J. Chem. Phys. 2000; 112(17): 7669-7683.6 19.Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998; 27(4): 241-250.6 20.Otto A, Mrozek I, Grabhorn H, Akemann W. SURFACE-ENHANCED RAMAN-SCATTERING. J. Phys.-Condes. Matter 1992; 4(5): 1143-1212. 21.Persson BNJ. ON THE THEORY OF SURFACE-ENHANCED RAMAN-SCATTERING. Chem. Phys. Lett. 1981; 82(3): 561-565.7 22.Otto A. Surface-enhanced Raman scattering: ‘classical’ and ‘chemical’ origins Light Scattering in Solids7 IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects edMCardona and G Guntherodt, Berlin:Springer, 1984.7 23.Michaels AM, Nirmal M, Brus LE. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society 1999; 121(43): 9932-9939.7 24.Otto A. Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Phys. Status Solidi A-Appl. Res. 2001; 188(4): 1455-1470.7 25.Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Surface-enhanced Raman scattering and biophysics. J. Phys.-Condes. Matter 2002; 14(18): R597-R624.7 26.Kambhampati P, Child CM, Foster MC, Campion A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J. Chem. Phys. 1998; 108(12): 5013-5026.8 27.Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures. Trac-Trends Anal. Chem. 1998; 17(8-9): 557-582.9 28.Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Analytical and Bioanalytical Chemistry 2005; 382(8): 1751-17709 29.Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters 2001; 78(6): 802-804.9 30.Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 1997; 277(5334): 1978-1981.10 31.Paul S, Pearson C, Molloy A, Cousins MA, Green M, Kolliopoulou S et al. Langmuir-Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures. Nano Letters 2003; 3(4): 533-536.10 32.Genson KL, Holzmuller J, Villacencio OF, McGrath DV, Vaknin D, Tsukruk VV. Langmuir and grafted monolayers of photochromic amphiphilic monodendrons of low generations. Journal of Physical Chemistry B 2005; 109(43): 20393-20402.10 33.Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters 2003; 3(9): 1229-1233.10 34.Lu Y, Liu GL, Lee LP. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Letters 2005; 5(1): 5-9.10 35.Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007; 2(7): 435-440.10 36.Hulteen JC, Vanduyne RP. NANOSPHERE LITHOGRAPHY - A MATERIALS GENERAL FABRICATION PROCESS FOR PERIODIC PARTICLE ARRAY SURFACES. J. Vac. Sci. Technol. A-Vac. Surf. Films 1995; 13(3): 1553-1558.11 37.Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. Journal of Physical Chemistry B 1999; 103(19): 3854-3863.11 38.Zhang XY, Yonzon CR, Van Duyne RP. Nanosphere lithography fabricated plasmonic materials and their applications. J. Mater. Res. 2006; 21(5): 1083-1092.12 39.Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters 1997; 78(9): 1667-1670.14 40.Nie SM, Emery SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997; 275(5303): 1102-1106.16 41.Xu HX, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters 1999; 83(21): 4357-4360.16 42.Jensen TR, Schatz GC, Van Duyne RP. Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. Journal of Physical Chemistry B 1999; 103(13): 2394-2401.16 43.Liu GL, Lee LP. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Applied Physics Letters 2005; 87(7).16 44.GarciaVidal FJ, Pendry JB. Collective theory for surface enhanced Raman scattering. Physical Review Letters 1996; 77(6): 1163-1166.16 45.Kahl M, Voges E. Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys. Rev. B 2000; 61(20): 14078-14088.16 46.Genov DA, Sarychev AK, Shalaev VM, Wei A. Resonant field enhancements from metal nanoparticle arrays. Nano Letters 2004; 4(1): 153-158.16 47.Wei A, Kim B, Sadtler B, Tripp SL. Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays. ChemPhysChem 2001; 2(12): 743.17 48.Sauer G, Brehm G, Schneider S, Graener H, Seifert G, Nielsch K et al. In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. J. Appl. Phys. 2005; 97(2).17 49.Jiang J, Bosnick K, Maillard M, Brus L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Journal of Physical Chemistry B 2003; 107(37): 9964-9972.21 50.Giese B, McNaughton D. Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces. Journal of Physical Chemistry B 2002; 106(1): 101-112.25 51.Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S. Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys. Rev. B 2004; 69(15).25 52.Xu ML, Dignam MJ. RAMAN-SCATTERING BY HIGH-DENSITY DISPERSIONS .3. CALCULATION OF RAMAN INTENSITIES FOR MOLECULES PHYSISORBED ON LINEAR-CHAINS OF SPHERICAL-PARTICLES. J. Chem. Phys. 1994; 100(1): 197-203.26 53.Liu CY, Datta A, Wang YL. Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Applied Physics Letters 2001; 78(1): 120-122.27 54.Liu CY, Datta A, Liu NW, Peng CY, Wang YL. Order-disorder transition of anodic alumina nanochannel arrays grown under the guidance of focused-ion-beam patterning. Applied Physics Letters 2004; 84(14): 2509-2511.27 55.Liu NW, Datta A, Liu CY, Peng CY, Wang HH, Wang YL. Fabrication of anodic-alumina films with custom-designed arrays of nanochannels. Advanced Materials 2005; 17(2): 222..27 56.Peng CY, Liu CY, Liu NW, Wang HH, Datta A, Wang YL. Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-bearn patterned aluminum. Journal of Vacuum Science & Technology B 2005; 23(2): 559-562.27 57.Brown RJC, Milton MJT. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). Journal of Raman Spectroscopy 2008; 39(10): 1313-1326.27 58.Kim B, Tripp SL, Wei A. Self-organization of large gold nanoparticle arrays. Journal of the American Chemical Society 2001; 123(32): 7955-7956.27 59.Chaney SB, Shanmukh S, Dluhy RA, Zhao YP. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Applied Physics Letters 2005; 87(3).27 60.Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR et al. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discussions 2006; 132: 9-26.27 61.Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH et al. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Advanced Materials 2006; 18(4): 491.27 62.Biring S, Wang HH, Wang JK, Wang YL. Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling. Optics Express 2008; 16(20): 15312-15324.27 63.Liu TT, Lin YH, Hung CS, Liu TJ, Chen Y, Huang YC et al. A High Speed Detection Platform Based on Surface-Enhanced Raman Scattering for Monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall. Plos One 2009; 4(5).28 64.Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B. Global Water Pollution and Human Health. Annual Review of Environment and Resources, Vol 35 2010: 109-136.28 65.Stoddart PR, White DJ. Optical fibre SERS sensors. Analytical and Bioanalytical Chemistry 2009; 394(7): 1761-1774.28 66.Ma XD, Huo HB, Wang WH, Tian Y, Wu N, Guthy C et al. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser. Sensors 2010; 10(12): 11064-11071.28 67.Lan XW, Han YK, Wei T, Zhang YN, Jiang L, Tsai HL et al. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Optics Letters 2009; 34(15): 2285-2287.28 68.Chu HY, Liu YJ, Huang YW, Zhao YP. A high sensitive fiber SERS probe based on silver nanorod arrays. Optics Express 2007; 15: 12230-12239.28 69.Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing. Biosensors & Bioelectronics 2009; 24(5): 1531-1535.28 70.White DJ, Mazzolini AP, Stoddart PR. Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. Journal of Raman Spectroscopy 2007; 38(4): 377-382.28 71.Park SJ, Lee HS, Cho JH, Lee KW. Nanoporous anodic alumina film on glass: Improving transparency by an ion-drift process. Electrochemical and Solid State Letters 2005; 8(3): D5-D7.30 72.Hu YQ, Zhao YP, Yu TX. Formation of dendritic nanostructures in Pyrex glass anodically bonded to silicon coated with an aluminum thin film. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2008; 483-84: 611-616.30 73.Schmidt B, Nitzsche P, Lange K, Grigull S, Kreissig U, Thomas B et al. In situ investigation of ion drift processes in glass during anodic bonding. Sensors and Actuators a-Physical 1998; 67(1-3): 191-198.30 74.Xu HX, Wang XH, Persson MP, Xu HQ, Kall M, Johansson P. Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Physical Review Letters 2004; 93(24).37 75.Zuloaga J, Prodan E, Nordlander P. Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer. Nano Letters 2009; 9(2): 887-891.37 76.Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquatic Toxicology 2004; 66(3): 319-329.37 77.Sudova E, Machova J, Svobodova Z, Vesely T. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Veterinarni Medicina 2007; 52(12): 527-539.37 78.Gu HW, Ho PL, Tsang KWT, Wang L, Xu B. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Journal of the American Chemical Society 2003; 125(51): 15702-15703.39 79.Gu HW, Ho PL, Tsang KWT, Yu CW, Xu B. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chem. Commun. 2003; (15): 1966-1967.39 80.Gu HW, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters 2003; 3(9): 1261-1263.39 81.Gao JH, Li L, Ho PL, Mak GC, Gu HW, Xu B. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Advanced Materials 2006; 18(23): 3145.39 82.Ndieyira JW, Watari M, Barrera AD, Zhou D, Vogtli M, Batchelor M et al. Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance. Nat. Nanotechnol. 2008; 3(11): 691-696.39 83.Williams DH, Bardsley B. The vancomycin group of antibiotics and the fight against resistant bacteria. Angew. Chem.-Int. Edit. 1999; 38(9): 1173-1193.39 84.Zhang JY, Do J, Premasiri WR, Ziegler LD, Klapperich CM. Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Lab Chip 2010; 10(23): 3265-3270.41 85.Sundram UN, Griffin JH, Nicas TI. Novel vancomycin dimers with activity against vancomycin-resistant enterococci. Journal of the American Chemical Society 1996; 118(51): 13107-13108.43 86.Walsh C. Microbiology - Deconstructing vancomycin. Science 1999; 284(5413): 442-443.43 87.Kao P, Malvadkar NA, Cetinkaya M, Wang H, Allara DL, Demirel MC. Surface-enhanced Raman detection on metalized nanostructured poly(p-xylylene) films. Advanced Materials 2008; 20(18): 3562.45 88.Liang X, Liu JH, Li SM, Mei Y, Wang YQ. Magnetic and mechanical properties of micro/nano particles prepared by metallizing rod-shaped bacteria. Mater. Lett. 2008; 62(17-18): 2999-3002.50 89.Wang J, He SY, Xie SL, Xu L, Gu N. Probing nanomechanical properties of nickel coated bacteria by nanoindentation. Mater. Lett. 2007; 61(3): 917-920.50 90.Mothershed EA, Whitney AM. Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clin. Chim. Acta 2006; 363(1-2): 206-220.52 91.Rolain JM, Mallet MN, Fournier PE, Raoult D. Real-time PCR for universal antibiotic susceptibility testing. J. Antimicrob. Chemother. 2004; 54(2): 538-541.52 92.Kneipp K, Moskovits M, Kneipp H. Surface-enhanced raman scattering : physics and applications, Springer, 2006.53 93.Kennedy BJ, Spaeth S, Dickey M, Carron KT. Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. Journal of Physical Chemistry B 1999; 103(18): 3640-3646.53 94.Efrima S, Bronk BV. Silver colloids impregnating or coating bacteria. Journal of Physical Chemistry B 1998; 102(31): 5947-5950.53 95.Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 2004; 76(1): 40-4753 96.Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD. Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria. Journal of Physical Chemistry B 2005; 109(1): 312-320.53 97.Sengupta A, Laucks ML, Davis EJ. Surface-enhanced Raman spectroscopy of bacteria and pollen. Applied Spectroscopy 2005; 59(8): 1016-1023.53 98.Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discussions 2006; 132: 281-292.53 99.Naja G, Bouvrette P, Hrapovic S, Luong JHT. Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 2007; 132(7): 679-686.53 100.Szeghalmi A, Kaminskyj S, Rosch P, Popp J, Gough KM. Time fluctuations and imaging in the SERS spectra of fungal hypha grown on nanostructured substrates. Journal of Physical Chemistry B 2007; 111(44): 12916-12924.53 101.Kahraman M, Yazici MM, Sahin F, Bayrak OF, Culha M. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Applied Spectroscopy 2007; 61(5): 479-485.53
|