跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王懷賢
研究生(外文):Huai-Hsien Wang
論文名稱:表面增強拉曼基板之發展與應用
論文名稱(外文):Development and Application in Surface Enhanced Raman Scattering Substrate
指導教授:王玉麟王玉麟引用關係
指導教授(外文):Yuh-Lin Wang
口試委員:宋克嘉林景泉劉定宇王俊凱
口試日期:2010-07-01
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:78
中文關鍵詞:拉曼散射表面增強拉曼散射氧化鋁奈米銀粒子細菌細胞壁
外文關鍵詞:Raman scatteringSurface-enhanced Raman scattering (SERS)anodic aluminum oxide (AAO)silver nanoparticlebacteriacell wall
相關次數:
  • 被引用被引用:0
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用陽極氧化鋁孔洞來成長奈米銀粒子陣列基板,藉由精確的調整其銀粒子間距(5〜25奈米)使其用於表面增強拉曼光譜,其拉曼增強效果在粒子間距小於10奈米以下開始明顯改變,並在5奈米時達到最大,這樣的結果與表面耦合電漿子理論相符。為了將此增強式拉曼基板應用於細菌檢測上,這種不透明的拉曼增強基板更進一步的借由離子漂移的處理過程中,使其氧化變成透明,這種透明基板擁有拉曼增強能力的同時並有良好的光透射率、表面增強拉曼散射特性和高對比的微生物光學成像,如此的特性可用於檢測水污染物。另一方面,我們也利用萬古黴素塗布於銀粒子基板上使其成為一種特殊類型的基板,它可以用於檢測無標記的單隻細菌的表面增強拉曼光譜,這樣的特殊型基板具有約千倍的捕捉細菌能力,以及約4〜5倍的細菌表面增強拉曼信號增強,且其細菌光譜不會受到萬古黴素的干擾。我們還應用奈米銀粒子拉曼增強基板於辨別細菌細胞壁的精細結構上,以此基板建構的表面增強拉曼光譜平台,可以敏銳和穩定的反映出不同細胞壁結構差異的細菌,如革蘭氏陽性菌、革蘭氏陰性菌或分枝桿菌。此外細菌對抗生素的藥物敏感性,利用細菌的拉曼光譜上在投藥後的變化,可在1個小時左右的時間就可得知,這使得我們可以快速的來區分細菌的耐藥性,這種表面增強拉曼光譜來診斷的方式,也適用於單隻的細菌,使得利用增強拉曼光譜來快速微生物檢測的方式,不再需要長時間靠培養細菌就可以直接對臨床樣品做檢測。

Arrays of silver nanoparticles grown on anodic alumina nanochannels (Ag-NPs/AAO) with precisely tunable gaps (5~25 nm) are fabricated as substrate for using on surface-enhanced Raman spectroscopy. The Raman enhancement becomes significant for gaps below 10 nm and turns dramatically large when gaps reach an unprecedented value of 5 nm. The results are quantitatively consistent with theories based on collectively coupled surface plasmon. These opaque Raman enhancing substrates (Ag-NPs/AAO) have been further rendered transparent by an ion-drift process to complete the oxidation. The transparent substrates exhibit Raman enhancing capability and good optical transmissivity, allowing for concurrent surface-enhanced Raman scattering (SERS) characterization and high contrast transmission-mode optical imaging of microorganisms as well as in-situ detection of dilute water pollutants. On the other hand, we show that vancomycin coating of a special type of substrate covered by Ag-NPs/AAO, which can provide label-free detection of single bacteria via surface enhanced Raman spectroscopy, leads to ~1000 folds increase in its capability to capture bacteria; and 4~5 folds increase in the SERS signal of captured bacteria without introducing significant spectral interference. We also apply the Ag-NPs/AAO SERS substrate to assess the fine structures of the bacterial cell wall. The SERS profiles recorded by such a platform are sensitive and stable, that could readily reflect different bacterial cell walls found in Gram-positive, Gram-negative, or mycobacteria groups. Moreover, characteristic changes in SERS profile were noticed in the drug-sensitive bacteria at the early period (i.e., ~1 hr) of antibiotic exposure, which could be used to differentiate them from the drug-resistant ones. The SERS-based diagnosis could be applied to a single bacterium. The high-speed SERS detection represents a novel approach for microbial diagnostics. The single bacterium detection capability of SERS makes possible analyses directly on clinical specimen instead of pure cultured bacteria.

Chinese abstract I
English abstract II
Catalog IV
Figure content VI
Chapter 1 Background 1
1.1 Raman scattering 1
1.2 Surface-enhanced Raman scattering 3
1.2.1 Electromagnetic theory 4
1.2.2 Chemical theory 6
1.3 Surface-enhanced Raman scattering material 8
1.4 Self-organized ordered anodic alumina nanochannels 12
Chapter 2 Development of surface-enhanced Raman scattering substrate 16
2.1 Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps 16
2.1.1 Introduction 16
2.1.2 Experimental 18
2.1.3 Results and Discussion 20
2.1.4 Conclusion 26
2.2 Transparent Raman-enhancing substrates for microbiological monitoring and in-situ pollutant detection 27
2.2.1 Introduction 27
2.2.2 Experiment 29
2.2.3 Results and Discussion 33
2.2.3.1 Observation and SERS measurement of bacteria 33
2.2.3.2 SERS detection of MG 36
2.2.4 Conclusion 38
2.3 Culture/label-free deetection and drug-resistant testing of bacteria using an array of functionalized Raman-enhancing nanoparticle 39
2.3.1 Introduction 39
2.3.2 Experiment 40
2.3.3 Results and Discussion 42
2.3.4 Conclusion 50
Chapter 3 Application of surface-enhanced Raman scattering 52
3.1 A high speed detection platform base on SERS for monitoring antibiotic-induced chemical changes in bacteria cell wall 52
3.1.1 Introduction 52
3.1.2 Experiment 54
3.1.2.1 Preparation of bacteria samples 54
3.1.2.2 Preparations of protoplasts or spheroplasts 54
3.1.2.3 Measurement of bacteria SERS spectra 55
3.1.3 Results and Discussion 58
3.1.3.1 The characteristics of the SERS profiles reveal the chemical
features of the bacterial envelope 58
3.1.3.2 Early SERS spectral changes are indicative of bacteria’s
susceptibility to antibiotic treatment 61
3.1.3.3 The SERS analyses can be applied to a single bacterium 63
3.1.4 Conclusion 65
Chapter 4 Conclusion 66
Reference 67


1.Placzek G. Rayleigh Streeung und Raman Effekt, vol. 6. Hdb. DerRadiologie, 1934.1
2.Gardiner DJ, Beroggi GEG, Graves PR. Practical Raman Spectroscopy 1989.1
3.Wikipedia (http://en.wikipedia.org/wiki/Raman_scattering)1
4.Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999; 99(10): 2957-+.3
5.Fleischm.M, Hendra PJ, McQuilla.Aj. RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE. Chem. Phys. Lett. 1974; 26(2): 163-166.3
6.Jeanmaire DL, Vanduyne RP. SURFACE RAMAN SPECTROELECTROCHEMISTRY .1. HETEROCYCLIC, AROMATIC, AND ALIPHATIC-AMINES ADSORBED ON ANODIZED SILVER ELECTRODE. J. Electroanal. Chem. 1977; 84(1): 1-20.4
7.Kerker M, Siiman O, Bumm LA, Wang DS. SURFACE ENHANCED RAMAN-SCATTERING (SERS) OF CITRATE ION ADSORBED ON COLLOIDAL SILVER. Appl. Optics 1980; 19(19): 3253-3255.4
8.Wang DS, Kerker M. ENHANCED RAMAN-SCATTERING BY MOLECULES ADSORBED AT THE SURFACE OF COLLOIDAL SPHEROIDS. Phys. Rev. B 1981; 24(4): 1777-1790.4
9.Zeman EJ, Schatz GC. AN ACCURATE ELECTROMAGNETIC THEORY STUDY OF SURFACE ENHANCEMENT FACTORS FOR AG, AU, CU, LI, NA, AL, GA, IN, ZN, AND CD. J. Phys. Chem. 1987; 91(3): 634-643.4
10.Inoue M, Ohtaka K. SURFACE ENHANCED RAMAN-SCATTERING BY METAL SPHERES .1. CLUSTER EFFECT. J. Phys. Soc. Jpn. 1983; 52(11): 3853-3864.4
11.Xu HX, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 2000; 62(3): 4318-4324.4
12.Knoll W. Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 1998; 49: 569-638.5
13.Moskovits M, Dilella DP, Maynard KJ. SURFACE RAMAN-SPECTROSCOPY OF A NUMBER OF CYCLIC AROMATIC-MOLECULES ADSORBED ON SILVER- SELECTION-RULES AND MOLECULAR-REORIENTATION. Langmuir 1988; 4(1): 67-76.5
14.Chu P, Mills DL. Electromagnetic response of nanosphere pairs: Collective plasmon resonances, enhanced fields, and laser-induced forces. Phys. Rev. B 2008; 77(4).5
15.Ko H, Singamaneni S, Tsukruk VV. Nanostructured Surfaces and Assemblies as SERS Media. Small 2008; 4(10): 1576-1599.5
16.Otto A. The ''chemical'' (electronic) contribution to surface-enhanced Raman scattering. Journal of Raman Spectroscopy 2005; 36(6-7): 497-509.6
17.Jiang JD, Burstein E, Kobayashi H. RESONANT RAMAN-SCATTERING BY CRYSTAL-VIOLET MOLECULES ADSORBED ON A SMOOTH GOLD SURFACE - EVIDENCE FOR A CHARGE-TRANSFER EXCITATION. Physical Review Letters 1986; 57(14): 1793-1796.6
18.Arenas JF, Woolley MS, Tocon IL, Otero JC, Marcos JI. Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states. J. Chem. Phys. 2000; 112(17): 7669-7683.6
19.Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998; 27(4): 241-250.6
20.Otto A, Mrozek I, Grabhorn H, Akemann W. SURFACE-ENHANCED RAMAN-SCATTERING. J. Phys.-Condes. Matter 1992; 4(5): 1143-1212.
21.Persson BNJ. ON THE THEORY OF SURFACE-ENHANCED RAMAN-SCATTERING. Chem. Phys. Lett. 1981; 82(3): 561-565.7
22.Otto A. Surface-enhanced Raman scattering: ‘classical’ and ‘chemical’ origins Light Scattering in Solids7
IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects edMCardona and G Guntherodt, Berlin:Springer, 1984.7
23.Michaels AM, Nirmal M, Brus LE. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society 1999; 121(43): 9932-9939.7
24.Otto A. Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Phys. Status Solidi A-Appl. Res. 2001; 188(4): 1455-1470.7
25.Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Surface-enhanced Raman scattering and biophysics. J. Phys.-Condes. Matter 2002; 14(18): R597-R624.7
26.Kambhampati P, Child CM, Foster MC, Campion A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J. Chem. Phys. 1998; 108(12): 5013-5026.8
27.Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures. Trac-Trends Anal. Chem. 1998; 17(8-9): 557-582.9
28.Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Analytical and Bioanalytical Chemistry 2005; 382(8): 1751-17709
29.Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters 2001; 78(6): 802-804.9
30.Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 1997; 277(5334): 1978-1981.10
31.Paul S, Pearson C, Molloy A, Cousins MA, Green M, Kolliopoulou S et al. Langmuir-Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures. Nano Letters 2003; 3(4): 533-536.10
32.Genson KL, Holzmuller J, Villacencio OF, McGrath DV, Vaknin D, Tsukruk VV. Langmuir and grafted monolayers of photochromic amphiphilic monodendrons of low generations. Journal of Physical Chemistry B 2005; 109(43): 20393-20402.10
33.Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters 2003; 3(9): 1229-1233.10
34.Lu Y, Liu GL, Lee LP. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Letters 2005; 5(1): 5-9.10
35.Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007; 2(7): 435-440.10
36.Hulteen JC, Vanduyne RP. NANOSPHERE LITHOGRAPHY - A MATERIALS GENERAL FABRICATION PROCESS FOR PERIODIC PARTICLE ARRAY SURFACES. J. Vac. Sci. Technol. A-Vac. Surf. Films 1995; 13(3): 1553-1558.11
37.Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. Journal of Physical Chemistry B 1999; 103(19): 3854-3863.11
38.Zhang XY, Yonzon CR, Van Duyne RP. Nanosphere lithography fabricated plasmonic materials and their applications. J. Mater. Res. 2006; 21(5): 1083-1092.12
39.Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters 1997; 78(9): 1667-1670.14
40.Nie SM, Emery SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997; 275(5303): 1102-1106.16
41.Xu HX, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters 1999; 83(21): 4357-4360.16
42.Jensen TR, Schatz GC, Van Duyne RP. Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. Journal of Physical Chemistry B 1999; 103(13): 2394-2401.16
43.Liu GL, Lee LP. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Applied Physics Letters 2005; 87(7).16
44.GarciaVidal FJ, Pendry JB. Collective theory for surface enhanced Raman scattering. Physical Review Letters 1996; 77(6): 1163-1166.16
45.Kahl M, Voges E. Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys. Rev. B 2000; 61(20): 14078-14088.16
46.Genov DA, Sarychev AK, Shalaev VM, Wei A. Resonant field enhancements from metal nanoparticle arrays. Nano Letters 2004; 4(1): 153-158.16
47.Wei A, Kim B, Sadtler B, Tripp SL. Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays. ChemPhysChem 2001; 2(12): 743.17
48.Sauer G, Brehm G, Schneider S, Graener H, Seifert G, Nielsch K et al. In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays. J. Appl. Phys. 2005; 97(2).17
49.Jiang J, Bosnick K, Maillard M, Brus L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Journal of Physical Chemistry B 2003; 107(37): 9964-9972.21
50.Giese B, McNaughton D. Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces. Journal of Physical Chemistry B 2002; 106(1): 101-112.25
51.Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S. Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys. Rev. B 2004; 69(15).25
52.Xu ML, Dignam MJ. RAMAN-SCATTERING BY HIGH-DENSITY DISPERSIONS .3. CALCULATION OF RAMAN INTENSITIES FOR MOLECULES PHYSISORBED ON LINEAR-CHAINS OF SPHERICAL-PARTICLES. J. Chem. Phys. 1994; 100(1): 197-203.26
53.Liu CY, Datta A, Wang YL. Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Applied Physics Letters 2001; 78(1): 120-122.27
54.Liu CY, Datta A, Liu NW, Peng CY, Wang YL. Order-disorder transition of anodic alumina nanochannel arrays grown under the guidance of focused-ion-beam patterning. Applied Physics Letters 2004; 84(14): 2509-2511.27
55.Liu NW, Datta A, Liu CY, Peng CY, Wang HH, Wang YL. Fabrication of anodic-alumina films with custom-designed arrays of nanochannels. Advanced Materials 2005; 17(2): 222..27
56.Peng CY, Liu CY, Liu NW, Wang HH, Datta A, Wang YL. Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-bearn patterned aluminum. Journal of Vacuum Science & Technology B 2005; 23(2): 559-562.27
57.Brown RJC, Milton MJT. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). Journal of Raman Spectroscopy 2008; 39(10): 1313-1326.27
58.Kim B, Tripp SL, Wei A. Self-organization of large gold nanoparticle arrays. Journal of the American Chemical Society 2001; 123(32): 7955-7956.27
59.Chaney SB, Shanmukh S, Dluhy RA, Zhao YP. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Applied Physics Letters 2005; 87(3).27
60.Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR et al. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discussions 2006; 132: 9-26.27
61.Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH et al. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Advanced Materials 2006; 18(4): 491.27
62.Biring S, Wang HH, Wang JK, Wang YL. Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling. Optics Express 2008; 16(20): 15312-15324.27
63.Liu TT, Lin YH, Hung CS, Liu TJ, Chen Y, Huang YC et al. A High Speed Detection Platform Based on Surface-Enhanced Raman Scattering for Monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall. Plos One 2009; 4(5).28
64.Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B. Global Water Pollution and Human Health. Annual Review of Environment and Resources, Vol 35 2010: 109-136.28
65.Stoddart PR, White DJ. Optical fibre SERS sensors. Analytical and Bioanalytical Chemistry 2009; 394(7): 1761-1774.28
66.Ma XD, Huo HB, Wang WH, Tian Y, Wu N, Guthy C et al. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser. Sensors 2010; 10(12): 11064-11071.28
67.Lan XW, Han YK, Wei T, Zhang YN, Jiang L, Tsai HL et al. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Optics Letters 2009; 34(15): 2285-2287.28
68.Chu HY, Liu YJ, Huang YW, Zhao YP. A high sensitive fiber SERS probe based on silver nanorod arrays. Optics Express 2007; 15: 12230-12239.28
69.Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing. Biosensors & Bioelectronics 2009; 24(5): 1531-1535.28
70.White DJ, Mazzolini AP, Stoddart PR. Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. Journal of Raman Spectroscopy 2007; 38(4): 377-382.28
71.Park SJ, Lee HS, Cho JH, Lee KW. Nanoporous anodic alumina film on glass: Improving transparency by an ion-drift process. Electrochemical and Solid State Letters 2005; 8(3): D5-D7.30
72.Hu YQ, Zhao YP, Yu TX. Formation of dendritic nanostructures in Pyrex glass anodically bonded to silicon coated with an aluminum thin film. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2008; 483-84: 611-616.30
73.Schmidt B, Nitzsche P, Lange K, Grigull S, Kreissig U, Thomas B et al. In situ investigation of ion drift processes in glass during anodic bonding. Sensors and Actuators a-Physical 1998; 67(1-3): 191-198.30
74.Xu HX, Wang XH, Persson MP, Xu HQ, Kall M, Johansson P. Unified treatment of fluorescence and Raman scattering processes near metal surfaces. Physical Review Letters 2004; 93(24).37
75.Zuloaga J, Prodan E, Nordlander P. Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer. Nano Letters 2009; 9(2): 887-891.37
76.Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquatic Toxicology 2004; 66(3): 319-329.37
77.Sudova E, Machova J, Svobodova Z, Vesely T. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Veterinarni Medicina 2007; 52(12): 527-539.37
78.Gu HW, Ho PL, Tsang KWT, Wang L, Xu B. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Journal of the American Chemical Society 2003; 125(51): 15702-15703.39
79.Gu HW, Ho PL, Tsang KWT, Yu CW, Xu B. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chem. Commun. 2003; (15): 1966-1967.39
80.Gu HW, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters 2003; 3(9): 1261-1263.39
81.Gao JH, Li L, Ho PL, Mak GC, Gu HW, Xu B. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Advanced Materials 2006; 18(23): 3145.39
82.Ndieyira JW, Watari M, Barrera AD, Zhou D, Vogtli M, Batchelor M et al. Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance. Nat. Nanotechnol. 2008; 3(11): 691-696.39
83.Williams DH, Bardsley B. The vancomycin group of antibiotics and the fight against resistant bacteria. Angew. Chem.-Int. Edit. 1999; 38(9): 1173-1193.39
84.Zhang JY, Do J, Premasiri WR, Ziegler LD, Klapperich CM. Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Lab Chip 2010; 10(23): 3265-3270.41
85.Sundram UN, Griffin JH, Nicas TI. Novel vancomycin dimers with activity against vancomycin-resistant enterococci. Journal of the American Chemical Society 1996; 118(51): 13107-13108.43
86.Walsh C. Microbiology - Deconstructing vancomycin. Science 1999; 284(5413): 442-443.43
87.Kao P, Malvadkar NA, Cetinkaya M, Wang H, Allara DL, Demirel MC. Surface-enhanced Raman detection on metalized nanostructured poly(p-xylylene) films. Advanced Materials 2008; 20(18): 3562.45
88.Liang X, Liu JH, Li SM, Mei Y, Wang YQ. Magnetic and mechanical properties of micro/nano particles prepared by metallizing rod-shaped bacteria. Mater. Lett. 2008; 62(17-18): 2999-3002.50
89.Wang J, He SY, Xie SL, Xu L, Gu N. Probing nanomechanical properties of nickel coated bacteria by nanoindentation. Mater. Lett. 2007; 61(3): 917-920.50
90.Mothershed EA, Whitney AM. Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clin. Chim. Acta 2006; 363(1-2): 206-220.52
91.Rolain JM, Mallet MN, Fournier PE, Raoult D. Real-time PCR for universal antibiotic susceptibility testing. J. Antimicrob. Chemother. 2004; 54(2): 538-541.52
92.Kneipp K, Moskovits M, Kneipp H. Surface-enhanced raman scattering : physics and applications, Springer, 2006.53
93.Kennedy BJ, Spaeth S, Dickey M, Carron KT. Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. Journal of Physical Chemistry B 1999; 103(18): 3640-3646.53
94.Efrima S, Bronk BV. Silver colloids impregnating or coating bacteria. Journal of Physical Chemistry B 1998; 102(31): 5947-5950.53
95.Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 2004; 76(1): 40-4753
96.Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD. Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria. Journal of Physical Chemistry B 2005; 109(1): 312-320.53
97.Sengupta A, Laucks ML, Davis EJ. Surface-enhanced Raman spectroscopy of bacteria and pollen. Applied Spectroscopy 2005; 59(8): 1016-1023.53
98.Jarvis RM, Brooker A, Goodacre R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discussions 2006; 132: 281-292.53
99.Naja G, Bouvrette P, Hrapovic S, Luong JHT. Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 2007; 132(7): 679-686.53
100.Szeghalmi A, Kaminskyj S, Rosch P, Popp J, Gough KM. Time fluctuations and imaging in the SERS spectra of fungal hypha grown on nanostructured substrates. Journal of Physical Chemistry B 2007; 111(44): 12916-12924.53
101.Kahraman M, Yazici MM, Sahin F, Bayrak OF, Culha M. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Applied Spectroscopy 2007; 61(5): 479-485.53


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝銘燕 (1999)。中華民國與美國大專院校啦隊組隊相關要素之比較。大專體育學刊,1(2),153-166。
2. 謝銘燕 (1999)。中華民國與美國大專院校啦隊組隊相關要素之比較。大專體育學刊,1(2),153-166。
3. 楊綺儷 (1994)。啦啦隊之組訓與編排。大專體育,13,52-58。
4. 楊綺儷 (1994)。啦啦隊之組訓與編排。大專體育,13,52-58。
5. 楊綺儷 (1993)。啦啦隊精神內涵之探討。實踐學報,24,155-171。
6. 楊綺儷 (1993)。啦啦隊精神內涵之探討。實踐學報,24,155-171。
7. 楊純碧(1998a)。不同成績等級啦啦隊選手的團隊氣氛、內在動機及滿意度之差異研究-以八十七年度全國大專盃啦啦隊比賽參賽隊伍為例。國立體育學院論叢,9(1),109-123。
8. 楊純碧(1998a)。不同成績等級啦啦隊選手的團隊氣氛、內在動機及滿意度之差異研究-以八十七年度全國大專盃啦啦隊比賽參賽隊伍為例。國立體育學院論叢,9(1),109-123。
9. 黃寶雀、王俊明(2005)。國小教練領導行為對團隊氣氛及團隊滿意度的影響。國立體育學院論叢,15(2),57-68。
10. 黃寶雀、王俊明(2005)。國小教練領導行為對團隊氣氛及團隊滿意度的影響。國立體育學院論叢,15(2),57-68。
11. 陳建瑋、游鎮安(2007)。運動熱情之探討。大專體育,93,114-118。
12. 陳建瑋、游鎮安(2007)。運動熱情之探討。大專體育,93,114-118。
13. 陳建瑋、季力康(2007)。休閒網球運動者的運動熱情與運動依賴之相關研究。大專體育學刊,9(93),57-65。
14. 陳建瑋、季力康(2007)。休閒網球運動者的運動熱情與運動依賴之相關研究。大專體育學刊,9(93),57-65。
15. 高三福、陳鈺芳(2006)。要求與實際領導行為一致性、領導信任與效能關係之研究。大專體育學刊,8,63-77。