跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:留振威
研究生(外文):Chen-Wei Liu
論文名稱:無電鍍Ni-P-Cu複合鍍層對7075-T6鋁合金應力腐蝕破壞的影響研究
論文名稱(外文):Effect of Electroless Ni-P-Cu Coatings on the Stress Corrosion Cracking Susceptibility of 7075-T6 Aluminum Alloy
指導教授:李正國李正國引用關係
學位類別:碩士
校院名稱:健行科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:77
中文關鍵詞:應力腐蝕慢應變速率拉伸試驗無電鍍鎳磷複合鍍層動態極化AA7075 鋁合金
外文關鍵詞:SCCSSRTElectroless Ni-P-CuPotentiodynamic polarizationAA7075
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由無電鍍法,在AA7075鋁合金原基材經表面陽極處理,沉積無電鍍Ni-P-Cu複合鍍層,分析鍍膜的結構與機械性質,並探討無電鍍Ni-P-Cu複合鍍層在經過熱處理實驗後對AA7075鋁合金在3.5%NaCl水溶液中應力腐蝕破壞的影響。
實驗中使用AA7075鋁合金原基材經陽極處理、無電鍍鎳磷、無電鍍鎳磷銅複合鍍層,以及熱處理實驗後經慢應變速率拉伸(SSRT)在3.5%NaCl溶液中應力腐蝕破壞試驗。本實驗利用掃描式電子顯微鏡(SEM)及X光能量散射分析儀(SEM-EDS),觀察鍍膜表面的形態、鍍層的元素成份分析。,並進行電化學動態極化法分析試驗。
研究結果顯示AA7075鋁合金試片表面經陽極處理後硬度值增加,其無電鍍鎳磷複合鍍層能有效的增加鍍層表面晶粒均勻附著。
另外無電鍍Ni-P複合鍍層,經由適當的陽極處理將能有效提升沉積效率、光滑度、緻密性與附著性,因而對於AA7075鋁合金經陽極表面處理後在3.5%NaCl水溶液中之耐應力腐蝕破壞有顯著的改進效果。


This study used electroless plating process to prepare Ni-P-Cu composite coating on AA7075 aluminum alloy surface after anodizing treatment.
The Stress-Corrosion Cracking (SCC) charactenrstics for the coating in 3.5%NaCl aqueous solution via slow strain rate test was also studied.
The surface morphology, element composition and surface hardness of the coatings were analyzed by SEM, EDS and Vicker’s hardness tester.
The corrosion and wear-corrosion resistance of electrolessplating Ni-P-Cu composite coating in 3.5% NaCl aqueous solution was evaluated, and also analyzed by electrochemical polarization measurement.
Experimental results indicated that electrolessplating Ni-P-Cu composite coating has high hardness, good corrosion resistance, particularly owing to the anodizing treatment of aluminum alloy. The anodizing treatment of AA7075 aluminum alloy substrate efficiently improved the adhesion, surface morphology and hardness of the electroplated Ni-P-Cu composite coating.
The results also indicated that the anti-SCC of the coating is potentiodynamic polarization significantly increased in 3.5% NaCl aqueous solution.


中文摘要……………………………………………………………………………i
英文摘要……………………………………………………………………………ii
誌謝……………………………………………………………………………iii
目錄……………………………………………………………………………iv
表目錄……………………………………………………………………………vi
圖目錄……………………………………………………………………………vii
符號說明……………………………………………………………………………ix
第一章 緒論…………………………………………………………………………… 1
第二章 理論基礎……………………………………………………………………… 2
2.1鋁及鋁合金………………………………………………………………… 3
2.1.1鋁的耐蝕表面處理…………………………………………………… 5
2.1.2鋁陽極處理氧化層…………………………………………………… 6
2.1.3電解拋光或化學拋光………………………………………………… 8
2.2無電鍍鎳磷簡介…………………………………………………………… 9
2.3無電鍍原理………………………………………………………………… 11
2.4腐蝕的定義………………………………………………………………… 14
2.4.1腐蝕電化學原理……………………………………………………… 14
2.4.2腐蝕的種類…………………………………………………………… 15
2.5電化學量測………………………………………………………………… 19
2.5.1極化原理……………………………………………………………… 19
2.5.2混合電位原理………………………………………………………… 21
第三章 實驗方法…………………………………………………………… 23
3.1無電鍍鎳-複合無電鍍鎳硫酸銅鍍膜……………………………… 24
3.1.1 基材試片成分………………………………………………………… 24
3.1.2試片前處理步驟……………………………………………………… 24
3.1.3電化學及摩耗測試試片……………………………………………… 33
3.2實驗步驟…………………………………………………………………… 34
3.3薄膜表面微結構觀察……………………………………………………… 35
3.4電化學腐蝕試驗…………………………………………………………… 36
第四章 結果與討論……………………………………………………………38
4.1鍍膜表面微結構與機械性質分析………………………………………… 38
4.1.1鍍膜表面微結構……………………………………………………… 38
4.1.2鍍膜表面元素分析…………………………………………………… 45
4.1.3無電鍍鎳Ni-P鍍膜沉積微結構與元素分析………………………… 47
4.2電化學腐蝕分析…………………………………………………………… 48
4.3應力腐蝕實驗……………………………………………………………… 58
第五章 結論………………………………………………………………… 71
參考文獻…………………………………………………………………… 72


1.尤光先編譯,鋁的陽極處理技術,臺北,徐氏基金會,132~140頁,民國七十二年。
2.周孟鋒,複合金屬粉末之製備與應用,逢甲大學,碩士論文,民國九十一年。
3.柯賢文,腐蝕及其防制(精裝本),臺北,全華科技圖書股份有限公司,民國九十四年。
4.洪偉修教授. 世界上最薄的材料--石墨烯. 98康熹化學報報. 康熹文化事業股份有限公司. 民國九十八年十一月號.
5.神戶德藏著,莊萬發譯,無電解鍍金,復漢出版社印行,民國七十八年。
6.張印本、楊良太、施議訓編著,「2004金屬材料對照手冊」,二版,台北市,理工科技顧問有限公司,530頁,民國九十六年一月。
7.陳宏生,謝淑惠,楊聰仁,”銅無電鍍鎳熱處理後在3.5wt % NaCl 抗蝕性研究”,防蝕工程,第十四卷,第四期,1-8頁,民國八十九年。
8.曾錫萍,「等通道彎角擠製參數對5083 鋁合金之影響」,國立中央大學,民國九十三年。
9.馮立明,王月,王玉景,”6063鋁合金化學鍍Ni-P合金工藝研究”,腐蝕與防護,第26卷,第2期,民國九十四年二月。
10.劉文海,鋁合金潛力產品與前景分析,金屬中心,民國九十五年八月
11.劉國雄、鄭晃忠、李勝隆、林樹均、葉均蔚編著,工程材料科學(新版),三版,臺北,全華科技圖書股份有限公司,345~388頁、613~718頁,民國九十五年十一月。
12.Abdel Hamid Z , M.T. Abou Elkhair, ”Development of electroless nickel-phosphorous composite deposits for wear resistance of 6061 aluminum alloy”, Material Letters 57, pp. 720-726, 2002.
13.Adam, S. et al , A self-consistent theory for graphene transport . Proc. Nat. Acad. Sci. USA. 2007.
14.Armyanov S. M. , ”Electroless Nickel-Phosphorus Deposition on Aluminum”,Interface and Internal Stress Metal Finishing, Vol. 90, pp. 36~41, 1992.
15.Avouris, P., Chen, Z. , and Perebeinos, V. , Carbon-based electronics. Nature Nanotechnology. , 2007.
16.Azumi K. T., et al, ”Electrochem. Soc.”, Vol. 150, pp. C461, 2003.
17.B. R. Strohmzier, W. T. Evan, and D. M. Schrall, J. Mater. Sci.,28 ,1993.
18.C. Y. Lee and K. L. Lin, Jpn. J. Appl. Phys. Vol. 1, 33, 1994.
19.Carbon Wonderland. Scientific American. ".. bits of graphene are undoubtedly present in every pencil mark", April. 2008.
20.Carbon-Based Electronics: Researchers Develop Foundation for Circuitry and Devices Based on Graphite ,Mar. 2006.
21.Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C.. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag. 2008.
22.Chen, J. H. et al., Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2, Nature Nanotechnology. 2008.
23.Chen, J. H. et al.. Charged Impurity Scattering in Graphene. Nature Physics. 2008.
24.D. D. L. Chung, Materials for Electronic Packaging, Butterworth-Heinemann, Boston, USA, Chap. 1995.
25.Discovery of Graphene, APS News. 2009.
26.Dumesic, J.A. Koutsky, and T.W. Chapman, J. Electrochem.Soc., Vol.121, pp.1405, 1974.
27.E.A. Van Den Meerakker, J. Appl. Electrochem.,Vol. 11, pp.387, 1981
28.Ferrari, A. C.; J. C. Meyer2, V. Scardaci1, C. Casiraghi1, M. Lazzeri3, F. Mauri3, S. Piscanec1, D. Jiang4, K. S. Novoselov4, S. Roth2, and A. K. Geim. Raman spectrum of graphene and graphene layers. Physics review letters, pp. 187401-5, 2006.
29.Fractionalization of charge and statistics in graphene and related structures, M. Franz, University of British Columbia, January 5, 2008
30.G. E. Thompson, G. C. Wood, “ Porous Anodic Film Formation On Aluminum “, Nature, Vol. 290, P230-232, 1981.
31.G. G. Gawrilov, Chemical (Electroless) Nickel-Plating, Portcullis Press Ltd., Redhill, Surrey, Chap. 1, 1979.
32.G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, Chap. 1, 1990.
33.G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, Chap. 4, 1990.
34.G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, Chap. 7, 1990.
35.G. Ruess and F. Vogt. Hochstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte fur Chemie. 1948.
36.G. Salvago and P. L. Cavallotti, Plating, pp. 665, 1972.
37.Geim, A. K. and Novoselov, K. S. The rise of graphene. Nature Materials, pp. 183–191, June 3, 2007.
38.Goldenstein A.W. , et al, ”Electrochem. Soc.”, Vol. 104, pp. 104, 1957.
39.Ishigami, Masa, et al., Atomic Structure of Graphene on SiO2. Nano Lett, pp. 1643-1648 , July 6, 2007.
40.Iwasaki, S.C. Reimer, J.N. Orlich, “Corrosive and abrasive wear in ore grinding”, Wear, 103, pp.253-267, 1985.
41.J. B. Hajdu, Plat. Surf. Finish, pp. 14, 1983.
42.J. E. A. M. Van Den Meerakker, J. Appl. Electrochem, pp. 395, 1981.
43.Jaszczak, John A.; Robinson, George W.; Dimovski, Svetlana; Gogotsi, Yury , Naturally Occurring Graphite Cones: Carbon, pp. 2085-2092, 2003.
44.Jiannis K. Pachos. Manifestations of topological effects in graphene . Contemporary Physics, 2009.
45.Jozefowicz, Mark, ”Hard coat aluminum anodizing: The low-down on how anodizers can get their feet wet and enter the lucrative hard coat market”, Metal Finishing, Vol.103, pp.39-41, 2005.
46.K. H. Hur, J. H. Jeong, and D. N. Lee, J. Mater. Sci, pp. 2037 , 1991.
47.K.L. Lin, et al, ”The morphologies and the chemical states of the multiple zincating deposits on Al pads of Si chips”, Thin Solid Films, Vol. 288, pp. 36 , 1996.
48.Keong, K. G., et al, “Hardness Evolution of Electroless Nickel-Phosphorus Deposits with Thermal Processing”, Surface and Coating Technology, pp. 263-274, 2003.
49.L. F. Spencer, Metal Finish, pp. 58-72, 1974.
50.L.E. Fratila-Apachitei, F.D. Tichelaar, G.E. Thompson, H. Terryn, P. Skeldon c, J. Duszczyk, L. Katgerman, ”A transmission electron 96 microscopy study of hard anodic oxide layers on AlSi(Cu) alloys”, Electrochimica Acta, Vol.49, pp. 3169–3177, 2004.
51.Lashmore D S, et al, ”Immersion Coating on Aluminium”, Plating & Surface Finishing, Vol. 67, pp. 37~41, 1980.
52.Lee, C. et al.. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008.
53.Mallory G. O. , ”Plat. Surf. Finish.”, Vol. 72, pp. 6, 1985.
54.Meyer, J. et al. The structure of suspended graphene sheets. Nature, pp. 60-63, 2007.
55.Morozov, S.V. et al.. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008.
56.N. Krasteva, V. Fotty, and S. Armyanov, J. Electrochem. Soc , pp. 141, 1994.
57.Nair, R. R. et al.. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008.
58.Nobel Foundation announcement, 2010.
59.Novoselov, K. S. et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, pp. 197-200, 2005.
60.O . Takano and K. Aoki, J. Met. Finish. Soc. Jpn., pp. 34, 1983.
61.O . Mercier and K.N.Melton,Met.Trans, pp. 387, 1979.
62.Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene
63.R.H.Bricknell, K.N.Melton and O.Mercier, Met.Trans, pp. 693, 1979.
64.R.H.Bricknell,and K.N.Melton, Met.Trans, pp.1541, 1980.
65.Rakovan, John and Jaszczak, Multiple length scale growth spirals on metamorphic graphite surfaces studied by atomic force microscopy: American Mineralogist, pp. 17-24, John. 2002.
66.Savage, N.. Researchers Unzip Carbon Nanotubes to Make Ribbons of Graphene: A new route to the narrow graphene ribbons needed in electronics, April. 16, 2009.
67.Schedin, F. et al.. Detection of individual gas molecules adsorbed on graphene. Nature Mater, pp.652-655, June. 9, 2007.
68.Semenoff, G. W.. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Physical Review Letters. 1984.
69.T.H.Nam,T.Saburi and K.Shimizu,Mat.Trans.JIM, pp. 31, 1990.
70.T.H.Nam,T.Saburi and K.Shimizu,Mat.Trans.JIM, pp. 33, 1991.
71.T.Tadaki and C.M.Wayman,Metallography, pp. 233, 1982.
72.T.Tadaki and C.M.Wayman,Metallography, pp. 247, 1982.
73.Takacs D. L., et al, ”Effects of pre-treatments on the corrosion properties of electroless Ni–P layers deposited on Al-Mg2 alloy”, Surface & Coatings Technology, pp. 4526–4535, 2007
74.Teo, Guoquan; Wang, Haomin; Wu, Yihong; Guo, Zaibing; Zhang, Jun; Ni, Zhenhua; Shen, Zexiang. Visibility study of graphene multilayer structures. Journal of Applied Physics, Vol. 6, pp. 124302, 2008.
75.V. Kohlschutter and P. Haenni. Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsaure. Z. Anorg. Allg. Chem, pp. 121-144, 1918.
76.Wallace, P. R.. The Band Theory of Graphite. Physical Review, pp.622, 1947.
77.Y. W. Wang, C. G. Xiao, and Z. G. Deng, Plat. Surf. Finish, pp.57-79, 1992.
78.Ying, “ Process for Fabricating an Array of Nanowires “, United States Patent, Patent , 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top