跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何佳哲
研究生(外文):Chai-Che
論文名稱:披覆RGDC胜肽於電沉積奈米金鈦基材
論文名稱(外文):RGDC peptide coating on electrodeposited nano-gold titanium substrates
指導教授:丁信智
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:口腔材料科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:41
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電沉積的方式,於鈦金屬基材表面沉積奈米金微粒,並於其上固定精胺酸─甘胺酸─天門冬胺酸─半胱胺酸胜肽序列。使用薄膜X光繞射儀、場發掃描式電子顯微鏡、高解析度X光光電能譜儀、電化學阻抗分析法及循環伏安法對鍍有奈米金之鈦基材表面及胜肽結合效果進行性質分析。實驗結果顯示使用電沉積的方式,可在鈦基材表面沉積上奈米金顆粒,於不同電位下進行電沉積後,便可得到粒徑大小分別約為60 nm、110 nm及80 nm之奈米金顆粒。其相組成屬於多晶型,結晶面包括(111)、(200)、(220)及(311)。X光光電能譜儀結果則顯示胜肽可藉由自組裝的方式被固定於鍍有奈米金之鈦基材上。證明此種表面修飾法可作為胜肽或生物分子固定之替代方法。MG63類骨母細胞貼附實驗顯示所披覆上之RGDC,對於細胞貼附狀況沒有明顯的效果。
The objective of the study was to evaluate the feasibility of nano-structured Au deposited onto titanium substrates using electrodeposition. After which, immobilization of Alginine–Glycine–Aspartate–Cysteine (RGDC) peptide onto nanogold-coated titanium surface was further performed for implant applications. Characterization of the Au nano-particles electrodeposited Ti and peptide immobilization were performed using a thin film X-ray diffractometer (TFXRD), field emission scanning electron microscope (SEM), and high resolution X-ray photoelectron spectroscopy (XPS), in addition to electrochemical methods including electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results showed that Au nano-particles could be easily electrodeposited on titanium surface. The mean particles size of 60 nm, 110 nm and 80 nm would be obtained following electrodeposition at different applied potential, respectively. XRD patterns indicated a polycrystalline orientation of the gold phase. The characteristic peaks were ascribed to (111), (200), (220), and (311) crystal faces. XPS spectrum illustrated that the RGDC peptide could be successfully immobilized on nano-gold-deposited Ti substrates via self-assembly of Au-S bonding. This procedure might be used as an alternative way for peptide or other bioactive molecules immobilization. However, the results of MG63 osteoblast-like cells cultured onto RGDC-Au-coated titanium surface showed that it did not benefit for cells attachment.
總目錄
誌謝 I
中文摘要 II
Abstract III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 文獻回顧及理論基礎 1
1-1 生醫材料 1
1-1-1 基本性質 1
1-1-2 骨修復應用 2
1-2 鈦金屬 3
1-2-1 鈦金屬表面修飾 5
1-3 胜肽 8
1-4 金金屬 8
1-4-1 奈米金於生醫工程之應用 9
1-4-2 奈米金製備法 9
1-4-3 奈米金之固定 10
1-4-4 電沉積製備奈米金屬顆粒 11
1-5 研究動機與目的 11
第二章 材料與方法 13
2-1 奈米金製備 13
2-2 奈米金定性分析 13
2-2-1 微結構觀察 13
2-2-2 相組成分析 13
2-2-3 電化學定性分析 14
2-3 RGD peptide披覆後表面化學成分分析 14
2-4 細胞貼附之評估 15
2-4-1 細胞培養 15
2-4-2 細胞貼附 15
第三章 結果與討論 17
3-1 奈米金 17
3-1-1 四氯金酸於純鈦表面還原行為 17
3-1-2 微結構觀察 19
3-1-3 相組成 22
3-1-4 電化學循環伏安法分析 24
3-1-5 電化學阻抗分析 26
3-2 RGDC披覆 28
3-2-1 XPS分析 28
3-2-2 細胞貼附 31
第四章 結論 33
第五章 參考文獻 34

表目錄
表1、鈦金屬之物理性質 4
表2、鈦及其合金表面修飾法 7

圖目錄
圖1、鈦金屬於不同電解液內進行CV結果 18
圖2、不同電沉積電位及時間後之表面微結構 20
圖3、電沉積後之表面成分分析 21
圖4、電沉積奈米金顆粒粒徑大小 21
圖5、電沉積處理後之TFXRD結果 23
圖6、不同電沉積參數之CV圖 25
圖7、不同電沉積參數之Nyquist圖 27
圖8、有無電沉積處理之鈦披覆上RGDC胜肽之XPS全譜圖 29
圖9、有無電沉積處理之鈦披覆上RGDC胜肽之S2p細部掃描 30
圖10、RGDC披覆後細胞貼附結果 32
1.Clemson Advisory Board for Biomaterials. Definition of the word biomaterial. The 6th Annnal Intermalionel Biomaterial Symposium 1974;20–24.
2.Ratner BD, Hoffman AS, Schoen FJ, Lemon JE. Biomaterials science. Academic press 1996.
3.Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 1998;19:1621–1639.
4.Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Scie Eng Res 2004;47:49–121.
5.Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials 1999;20:2311–2321.
6.Tsuchiya K, Chen G, Ushida T, Matsuno T, Tateishi T. Effects of cell adhesion molecules on adhesion of chondrocytes, ligament cells and mesenchymal stem cells. Mater Sci Eng: C 2001;17:79–82.
7.Geißler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel KW. Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. J Biomed Mater Res A 2000;51:752–760.
8.Becker D, Geißler U, Hempel U, Bierbaum S, Scharnweber D, Worch H, Wenzel KW. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J Biomed Mater Res A 2002;59:516–27.
9.Xiao SJ, Textor M, Spencer ND. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir 1998;14:5507–5516.
10.Poulin S, Durrieu MC, Polizu S, Yahia LH. Bioactive molecules for biomimetic materials: Identification of RGD peptide sequences by TOF-S-SIMS analysis. Appl Surf Sci 2006;252:6738–6741.
11.Müller R, Abke J, Schnell E, Scharnweber D, Kujat R, Englert C, Taheri D, Nerlich Ml, Angele P. Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials 2006;27:4059–4068.
12.Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, Mckee MD. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res A 1998;40:324–335.
13.Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 2002;23:2079–2087.
14.Adden N, Gamble LJ, Castner DG., Hoffmann A, Gross G, Menzel H. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 2006;22:8197–8204.
15.Zorn G, Gotman I, Gutmanas EY, Adadi R, Sukenik CN. Surface modification of Ti45Nb alloy by immobilization of RGD peptide via self assembled monolayer. J Mater Sci: Mater Med 2007;18:1309–1315.
16.Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–497.
17.Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667–681.
18.Garcia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005;84:407–413.
19.Porte-Durrieu MC, Guillemot F, Pallu S, Labrugere C, Brouillaud B, Bareille R, Amédée J, Barthe N, Dard M, Baquey C. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 2004;25:4837–4846.
20.Lucchini JP, Aurelle JL, Therin M, Donath K, Becker W. A pilot study comparing screw‐shaped implants. Surface analysis and histologic evaluation of bone healing. Clin Oral Implants Res 1996;7:397–404.
21.Wennerberg A, Albrektsson T, Johansson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 1996;17:15–22.
22.Baleani M, Viceconti M, Toni A. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Artif Organs 2000;24:296–299.
23.Wen HB, Wolke JG, Wijn JR, Liu Q, Cui FZ, de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 1997;18:1471–1478.
24.Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Mb and Ti-6Al-4V with different pretreatments J Mater Sci: Mater Med 1999;10:35–46.
25.Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res A 1996;32:409–417.
26.Lee BH, Kim YD, Shin JH, Lee KH. Surface modification by alkali and heat treatments in titanium alloys. J Biomed Mater Res A 2002;61:466–473.
27.Pan J, Thierry D, Leygraf C. Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: Blue coloration and clinical relevance. J Biomed Mate Res 1996;30:393–402.
28.Dieudonné SC, van den Dolder J, de Ruijter JE, PaldanH, Peltola T, van’t Hof MA, Happonen RP, Jansen JA. Osteoblast differentiation of bone marrow stromal cells cultured on silica gel and sol-gel-derived titania. Biomaterials 2002;23:3041–3051.
29.Kim HW, Kim HE, Knowlesb JC. Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials 2004;25:3351–3358.
30.Yoshida K, Kamada K, Sato K, Hatada R, Baba K, Atsuta M. Thin sol-gel-derived silica coatings on dental pure titanium casting. J Biomed Mater Res Part B: Appl Biomater 1999;48:778–785.
31.Yang B, Uchida M, Kim HM, Zhang X, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 2004;25:1003–1010.
32.Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Technol 2000;125:407–414.
33.Allen M, Myer B, Rushton N. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J Biomed Mater Res Part B: Appl Biomater 2001;58:319–328.
34.Hypolite CL, Mclernon TL, Adams DN, Chapman KE, Herbert CB, Huang CC, Distefano MD, Hu WS. Formation of Microscale Gradients of Protein Using Heterobifunctional Photolinkers. Bioconjug Chem 1997;8:658–663.
35.Tegoulia VA, Rao W, Kalambur AT, Rabolt JF, Cooper SL. Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold. Langmuir 2001;17:4396–4404.
36.Tsui YC, Doyle C, Clyne TW. Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials 1998;19:2015–2029.
37.Gledhill HC, Turner IG, Doyle C. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications. Biomaterials 1999;20:315–322.
38.Kweh SWK, Khor KA, Cheang P. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials 2002;23:775–785.
39.Khor KA, Li H, Cheang P. Processing–microstructure–property relations in HVOF sprayed calcium phosphate based bioceramic coatings. Biomaterials 2003;24:2233–2243.
40.LeClair P, Berera GP, Moodera JS. Titanium nitride thin films obtained by a modified physical vapor deposition process. Thin Solid Films 2000;376:9–15.
41.Uchida M, Nihira N, Mitsuo A, Toyoda K, Kubota K, Aizawa T. Friction and wear properties of CrAlN and CrVN films deposited by cathodic arc ion plating method. Surf Coat Technol 2004;177–178:627–630.
42.Jung MJ, Nam KH, Shaginyan LR, Han JG. Deposition of Ti thin film using the magnetron sputtering method. Thin Solid Films 2003;435:145–149.
43.Huang N, Yang P, Cheng X, Leng YX, Zheng XL, Cai GJ, Zhen ZH, Zhang F, Chen YR, Liu XH, Xi TF. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials 1998;19:771–776.
44.Sobiecki JR, Wierzchoń T, Rudnicki J. The influence of glow discharge nitriding, oxynitriding and carbonitriding on surface modification of Ti–1Al–1Mn titanium alloy. Vacuum 2002;64:41–46.
45.Ding SJ, Chang BW, Wu CC, Lai MF, Chang HC. Impedance spectral studies of self-assembled of alkanethiols with different chain lengths using different immobilization strategies on Au electrodes. Anal Chim Acta 2005;554:43–51.
46.Ulman A. Formation and structure of self-assembled monolayers. Chem rev 1996;96:1533–1554.
47.Uvdal K, Bodö P, Liedberg B. L-Cysteine adsorbed on gold and copper: An X-ray photoelectron spectroscopy study. J Colloid Interface Sci 1992;149:162–173.
48.Dakkouri AS, Kolb DM, Edelstein-Shima R, Mandler D. Scanning Tunneling Microscopy Study of L-Cysteine on Au(111). Langmuir 1996;12:2849–2852.
49.Isted GE, Martin DS, Smith CI, LeParc R, Cole RJ, Weightman P. The adsorption of L-cysteine on Au(110) in ultra-high vacuumand electrochemical environments. Phys stat sol (c) 2005;2:4012–4016.
50.Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 1993;144:175–192.
51.Cheng W, Dong S, Wang E. Gold nanoparticles as fine tuners of electrochemical properties of the electrode/solution interface. Langmuir 2002;18:9947–9952.
52.Turkevitch J, Stevenson PC, Hillier J. Nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 1951;11:55–75.
53.Frens Ğ. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature: Phys Sci 1973;241:20–22.
54.Yonezawa T, Kunitake T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids Surf A: Physicochem Eng Asp 1999;149:193–199.
55.Doron A, Katz E, Willner I. Organization of Au colloids as monolayer films onto IT0 glass surfaces: Application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 1995;11:1313–1317.
56.Grabar KC, Brown KR, Keating CD, Stranick SJ, Tang SL, Natan MJ. Nanoscale characterization of gold colloid monolayers: A comparison of four techniques. Anal Chem 1997;69:471–477.
57.Musick MD, Peña DJ, Botsko SL, McEvoy TM, Richardson JN, Natan MJ. Electrochemical properties of colloidal Au-based surfaces: Multilayer assemblies and seeded colloid Films. Langmuir 1999;15:844–850.
58.Hrapovic S, Liu Y, Enright G, Bensebaa F, Luong JHT. New strategy for preparing thin gold films on modified glass surfaces by electroless deposition. Langmuir 2003;19:3958–3965.
59.Yu A, Liang Z, Cho J, Caruso F. Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 2003;3: 1203–1207.
60.Zhang J, Kambayashi M, Oyama M. A novel electrode surface fabricated by directly attaching gold nanospheres and nanorods onto indium tin oxide substrate with a seed mediated growth process. Electrochem Commun 2004;6:683–688.
61.Finot MO, Braybrook GD, McDermott MT. Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes. J Electroanal Chem 1999;466:234–-241.
62.Liu YC, Juang LC. Electrochemical methods for the preparation of gold-coated TiO2 nanoparticles with variable coverages. Langmuir 2004;20;6951–6955.
63.Olson TS, Atanassov P, Brevnov DA. Electrodeposition of gold particles on aluminum substrates containing copper. J Phys Chem B 2005;109:1243–1250.
64.Oskam G. Searson PC. Electrochemistry of gold deposition on n-Si(100). J Electrochem Soc 2000;147:2199–2205.
65.Oskam, G; Long JG; Natarajan A; Searson PC. Electrochemical deposition of metal onto silicon. J Phys D: Appl Phys 1998;31;1927–1949.
66.Milchev A, Stoychev D, Lazarov V, Papoutsis A, Kokkinidis G. Electrocrystallisation of metal catalysts: nucleation and growth of platinum on a titanium electrode. J Crys Growth 2001;226:138–147.
67.Budevski E, Staikov G, Lorenz WJ. Electrocrystallization nucleation and growth phenomena. Electrochim Acta 2000;45:2559–2574.
68.Bindra P, Gerischer H, Kolb M. Electrolytic deposition of thin metal films on semiconductor substrates. J Electrochem Soc 1977;124:1012–1018.
69.El-Deab S, Sotomura T, Ohsaka T. Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. J Electrochem Soc 2005;152:C1–C6.
70.Norlin A, Pan J, Leygraf C. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. Biomol Eng 2002;19:67–71.
71.El-Deab MS, Arihara K, Ohsaka T. Fabrication of Au(111)-like polycrystalline gold electrodesand their applications to oxygen reduction. J Electrochem Soc 2004;151:E213–E218.
72.Arihara K, Ariga T, Takashima N, Arihara K, Okajima T, Kitamura F, Tokuda K, Ohsaka T. Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates. Phys Chem Chem Phys 2003;5:3758–3761.
73.Zhang J, Kambayashi M, Oyama M. Seed mediated growth of gold nanoparticles on indium tin oxide electrodes: Electrochemical characterization and evaluation. Electrochem Commun 2004;6:683–688.
74.El-Deab MS, Okajima T, Ohsaka T. Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J Electrochem Soc 2003;150:A851–A857.
75.Bard AJ, Faulkner LR. Electrochemical methods. 2nd edition. John Willy & Sons, 2001.
76.Castner DG., Hinds K, Grainger DW. X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 1996;12:5083–5086.
77.Cheng F, Gamble LJ, Grainger DW, Castner DG.. X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and principal component analysis of the hydrolysis, regeneration, and reactivity of N-hydroxysuccinimide-containing organic thin films. Anal Chem 2007;79:8781–8788.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top