跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖竟妤
研究生(外文):Liao Ching-Yu
論文名稱:以RAPD分析尖鐮胞菌(Fusariumoxysporum)各分化型之特殊DNA片段
論文名稱(外文):Characterizing formae speciales-specific DNA fragments by the RAPD analysis in Fusarium oxysporum
指導教授:藍清隆
指導教授(外文):Lan Ching-Long
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生命科學系碩士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:72
中文關鍵詞:尖鐮胞菌RAPDFoxy序列酒精脫氫脢基因Cytochrome c轉錄因子插入序列
外文關鍵詞:Fusarium oxysporumRAPDFoxy sequencealcohol dehydrogenase geneCytochrome ctranscriptional factorsinsertion sequence
相關次數:
  • 被引用被引用:1
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
尖鐮胞菌(Fusarium oxysporum)在世界各地引起許多植物病害,鐮胞菌菌落形態與生理上的變異極大,鑑定困難。本研究運用RAPD方法尋找尖鐮胞菌各分化型的特殊DNA片段。實驗中使用200支OPERON的RAPD引子,以R-1程式進行PCR,利用不同濃度組合的Mg2+或瓊脂膠體進行分析;結果顯示以1.5 mM Mg2+進行PCR後,再搭配1.4%瓊脂膠體分離PCR產物之解析度效果最佳。經多次重複試驗後,挑選出21支能在尖鐮胞菌基因組中放大出特異性片段的引子,各引子均具有CCA/TC/G、CC或GG dimer,其中有20支引子的3'-端第一個鹽基是G或C,且GC含量比都在60%∼70%之間。DNA多形性分析研究發現在具有致病性尖鐮胞菌之基因組較為一致,甚至只要使用單一個引子,就可明顯的將不同致病性分化型的尖鐮胞菌區分。將15個特異性片段經選殖定序,分析其DNA及氨基酸序列後發現:有兩個片段(685 bps與522 bps)與F. oxysporum f. sp. lycopersici的插入(insertion sequence)Foxy序列( FOX250814)相似,具有與SINE相似的RNA polymerase III結合點序列Box A與Box B,兩Box之間相隔都是33 bps DNA片段,而其中一個片段具有和Foxy相同的(TATG)5重複序列。由BA5引子所放大出約1800 bps片段的胺基酸序列經序列比對後和多種生物的酒精脫氫脢基因相似,相同度為34∼40 %,相似度為50∼55%;且具有高度保留的Motif Cytochrome c family heme-binding site。另外由引子AY11所放大出429 bps片段的DNA序列中,具有高度保留的Motif Basic - leucine zipper domain及zinc-binding region 2;這兩個序列是常見的轉錄因子(transcriptional factors),所以猜測在此DNA片段的上下游,可能有基因存在,其餘的11個片段中有6個片段與資料庫中的序列有>40%的序列相似性。為了進一步確認實驗中所挑出的特異性片段之專一性,利用南方墨點法進行分析,結果中顯示Dig探針和致病性尖鐮胞菌各分化型基因組DNA都有雜合訊號。

Fusarium oxysporum causes many plant diseases worldwide. Fusarium spp., with a high level of morphological and physiological diversity, are well-known to be difficult to identify. The RAPD (random amplified polymorphic DNAs ) method were employed to find out the DNA fragments specific to given F. oxysporum formae speciale. In this study, 200 OPERON RAPD primers were screened, R-1 program and 1.5 mM Mg2+ was used in the PCR amplification step, and the PCR products were then separated electrophoretically in the 1.4% agarose gels. Finally, 21 primers were found to amplify specific-DNA fragments from the F. oxysporum genomes. These primers all comprised CCA/TC/G、CC or GG dimer. Among these primers, the 3’- terminal nucleotide of 20 primers was a G or a C, and the GC content ranged from 60%∼70%. The DNA pattern of pathogenic F. oxysporum isolates was more similar to each other than the non-pathogenic isolates. Using the DNA amplification pattern from only one primer could discriminate difference among F. oxysporum formae speciales. Fifteen specific DNA fragments amplified from F. oxysporum genomic DNAs were cloned and sequenced. Two fragments of 685 bps and 522 bps, respectively aligned to the Foxy ( FOX250814) insertion sequence of F. oxysporum lycopersici. Both two sequences comprised Box A and Box B which are the SINE consensus sequence of RNA polymerase III binding site, a 33 bps spacer was also identified between two Box sequences. One fragment had a (TATG)5 repeat sequence typical of the Foxy sequence. The 1800 bps fragment amplified from the BA5 primer was aligned to alcohol dehydrogenase gene of several species, with a sequence identity of 34∼40 %, and a sequence similarity of 50∼55%. In addition, a consensus sequence of motif cytochrome c family heme-binding site was identified. A 429 bps fragment amplified from the AY11 primer comprised of consensus sequence of motif basic - leucine zipper domain and zinc-binding region 2. These motifs are transcriptional factors commonly found in different genomes, and it was tempted to suggest that gene was likely to exit in its up-stream or down-stream. Six fragments, among the rests of 11 DNA fragments, were aligned, with a sequence similarity greater than 40%, of sequences in the databases. To confirm specificity of the DNA fragment, the Southern dot blotting method was employed to probe the DNA templates of 33 different genomes. A positive hybridization signal was examined in most of the different formae speciales of F. oxysporum.

中文摘要------------------------------------------------------I
英文摘要------------------------------------------------------II
前言----------------------------------------------------------1
材料與方法----------------------------------------------------8
菌株來源------------------------------------------------------8
尖鐮胞菌菌株的培養方法----------------------------------------8
真菌基因組DNA的萃取-------------------------------------------9
植物基因組DNA的抽取-------------------------------------------10
RAPD供試引子--------------------------------------------------11
RAPD測試條件及分析--------------------------------------------11
基礎分生技術--------------------------------------------------11
序列分析------------------------------------------------------19
實驗結果------------------------------------------------------20
尖鐮胞菌菌株之RAPD 初步篩選-----------------------------------21
RAPD之PCR及電泳條件測試---------------------------------------21
尖鐮胞菌菌株之RAPD多形性--------------------------------------22
尋找尋找尖鐮胞菌特異性引子------------------------------------23
尖鐮胞菌特異性片段之選殖與DNA及氨基酸序列比對分析-------------24
特殊DNA片段的偵測---------------------------------------------27
討論----------------------------------------------------------28
參考文獻------------------------------------------------------39
圖表----------------------------------------------------------48
附錄----------------------------------------------------------69

周佳宏. 2000.植物萎凋病原菌-尖鐮胞菌(Fusarium oxysporum)偵測分子標記之研發. 輔仁大學生物學研究所碩士論文.
Alves-Santos, F. M., E. P. Benito, A. P. Eslava, and J. M. Diaz-Minguez 1999. Genetic diversity of Fusarium oxysporum strains from common bean fields in Spain. Appl. Environ. Microbiol. 65:3335-3340.
Assigbetse, K. B., D. Fernandez, M. P. Dubois, and J.-P. Geiger 1994. Differentiation of Fusarium oxysporum f.sp. vasinfectum races on cotton by random amplified polymorphic DNA (RAPD) analysis. Phytopathology 84:622-626.
Barve, M.P., M. P. Haware, M. N. Sainani, P. K. Ranjekar, and V. S. Gupta 2001. Potential of microsatellites to distinguish four races of Fusarium oxysporum f. sp. ciceri prevalent in India. Theor. Appl. Genet. 102:138-147.
Booth, C. 1971. The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, U. K.
Brazil, J.V., R. M. Alves, I. N.G. Rivera, D. P. Rodrigues, D. K. R. Karaolis, and L. C. Campos 2002. Prevalence of virulence-associated genes in clinical and environmental Vibrio cholerae strains isolated in Brazil between 1991 and 1999. FEMS Microbiol. Lett. 215:15-21.
Chelkowski, J. 1989. Topics in secondary metabolism ( volume2 ) - Fusarium mycotoxins, taxonomy and pathogenicity. Elsevier Science Publishers Press, New York.
Cotxarrera, L., M. I. Trillas-Gay, C. Strinberg, and C. Alabouvette 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 34:467-476.
Crowhust, R. N., B. T. Hawthorne, E. H. Rikkerink, and M. D. Templeton 1991. Differentiation of Fusarium solani f. sp. cucurbitae races1 and 2 by random amplification of polymorphic DNA. Curr. Genet. 20:391-396.
Curir, P., M. Dolci, P. Dolci, V. Lanzotti, and L. De Cooman 2003. Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochem. Anal. 14:8-12.
Dabouss, M. J., J. M. Daviere, S. Graziani, and T. Langin 2002. Evolution of the Fot1 transposons in the genus Fusarium: discontinuous distribution and epigenetic inactivation. Mol. Biol. Evol. 19:510-520.
Daviere, J. M., T. Langin, and M. J. Daboussi 2001. Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. Fungal Genet. Biol. 34:177-192.
Desjardins A. E., H. K. Manandhar, R. D. Plattner, G. G. Manandhar, S. M. Poling, and C. M. Maragos 2000. Fusarium species from Nepalese rice and production of mycotoxin and gibberellic acid by selected species. Appl. Environ. Microbiol. 66:1020-1025.
Dil-Afroze, A. M., I. M. Sulaiman, S. Sinha, C. Sarker, A. K. Mahapatra, and S. E. Hasnain 1998 Genetic alterations in brain tumors identified by RAPD analysis. Gene 206:45—48.
Edel, V., C. Steinberg, N. Gautheron, G. Recorbet, and C. Alabouvette 2001. Genetic diversity of Fusarium oxysporum populations isolated from different soils in France. FEMS Microbiol. Ecol. 36:61-71.
Faccioli, P., N. Pecchioni, A. M. Stanca, and V. Terzi 1999. Amplified fragment length polymorphism (AFLP) markers for barley malt fingerprinting. J. Cereal Sci. 29:257-260.
Frebortova, J., K. Matsushita, and H. Arata, O. Adachi 1998. Intermolecular electron transport in quinoprotein alcohol dehydrogenase of Acetobacter methanolicus: a redox-titration study. Biochim. Biophys. Acta. 1363:24-34.
Grajal-Martin, M. J., C. J. Simon, and F. J. Muehlbauer 1993. Use of random amplified polymorphic DNA (RAPD) to characterize race 2 of Fusarium oxysporum f.sp. pisi. Phytopathology 83:612-614.
Grajal-Martin, M. J., and F. J. Muehlbauer 2002. Genomic location of the Fw gene for resistance to Fusarium wilt rece 1 in peas. J. Hered. 93 : 291-293.
Gupta, A. K., R. Baran, and R. C. Summerbell 2000. Fusarium infections of the skin. Curr. Opin. Infect. Dis. 13:121—128.
Heidrum, P.-L., E. Manegold, G. Kroll, and G. Haase 2000. Case report. Pathohistological findings in a clinical case of disseminated infection with Fusarium oxysporum. Mycoses 43:367-372.
Hoelzel, A. R. 1992. Molecular Genetic Analysis of Populations. Oxford University Press, London.
Holtwick, R.,Holtwick R, H. Keweloh, and F. Meinhardt 1999. cis/trans isomerase of unsaturated fatty acids of Pseudomonas putida P8: evidence for a heme protein of the cytochrome c type. Appl. Environ. Microbiol. 65:2644-2649.
Hol, W. H., and V. A. Van 2002. Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. J. Chem. Ecol. 28:1763-1772.
Hue, F.-X., M. Huerre, M. A. Rouffault, and C. de Bievre 1999. Specific detection of Fusarium speicies in blood and tissue by a PCR Technique. J. Clin. Microbiol. 37:2434-2438.
Hua-Van, A., J.-M. Daviere, F. Kaper, T. Langin, and M.-J. Daboussi 2000. Genome organization in Fusarium oxysporum : Clusters of class II transposons. Curr. Genet. 37:339-347.
Hua-Van, A., T. Langin , and M. J. Daboussi 2001. Evolutionary history of the impala transposon in Fusarium oxysporum. Mol. Biol. Evol. 18:1959-1969.
Hua-Van, A, T. Langin, and M. J. Daboussi 2002. Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. Mol. Genet. Genomics 267:79-87.
Inoue, I., F. Namiki, and T. Tsuge 2002. Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein . Plant Cell 14:1869-83.
Jaeger, E. E., N. M. Carroll, S. Choudhurym, A. S. Dunlop, H. M. A. Towler, M. M. Matheson, P. Adamson, N. Okhravi, and S. Lightman 2000. Rapid detection and identification of Candida, Aspergillus, and Fusarium species in ocular samples using nested PCR. J. Clin. Microbiol. 38 :2902-2908.
Jain, S., K. Akiyama, T. Kan, T. Ohguchi, and R. Takata. 2003. The G protein beta subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum. Curr. Genet. 43:79-86.
Jauhar, P. P. 1996. Methods of Genome Analysis in Plants. CRC Press.
Kelly, A., A. R. Alcala-Jimenez, B. W. Bainbridge, J. B. Heale, E. Perez-Artes, and R. M. Jimenez-Diaz 1994. Use of genetic fingerprinting and random amplified polymorphic DNA to characterize pathotypes of Fusarium oxysporum f.sp. ciceris infecting chickpea. Phytopathology 84:1293-1298.
Kim, D. H., R. D. Martyn, and C. W. Magill 1993. Chromosomal polymorphism in Fusarium oxysporum f. sp. niveum. Phytopathology 83:1209-1216.
Kim, J. A., Y. Takahashi, R. Tanaka, K. Fukushima, K. Nishimura and M. Miyaji 2001. Identification and subtyping of Trichophyton mentagrophytes by random amplified polymorphic DNA. Mycoses 44:157-165.
Kistler, H. C. 1991. Repetitive genomic sequence for determining relatedness among strains of Fusarium oxysporum. Phytopathology. 81:331-336.
Kistler, H. C. 1997. Genetic diversity in the plant pathogenic fungus Fusarium oxysporum. Phytopathology 87:474-479.
Kohler, J. M., A. Csaki, J. Reichert, R. Moller, W. Straube, and W. Fritzsche 2001. Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sensors and Actuators B. 76:166-172.
Kricka, L. J. 2001. Microchips, microarrays, biochips and nanochips: personal laboratories for 21st century. Clin. Chim. Acta. 307:219-223.
Kumar, L. S. 1999. DNA markers in plant improvement: An overview. Biotechnology Advances. 17:143—182.
Kunishima, S., C. Inoue, T. Kamiya, and K. Ozawa. 2001. Presence of Propionibacterium acnes in blood components. Transfusion 41:1126-1129.
Leeflang, P., E. Smit, D.C.M. Glandorf, E.J. van Hannen, and K. Wernars 2002. Effects of Pseudomonas putida WCS358r and its genetically modified phenazine producing derivative on Fusarium population in a field experiment, as determined by 18S rDNA analysis. Soil Boil. Biochem. 34:1021-1025.
Liu, Z.J., P. Li, B. J. Argue, and R. A. Dunham 1999. Random amplified polymorphic DNA markers:usefulness for gene mapping and analysis of genetic variation of catfish. Aquaculture. 174:59—68.
Luo, S. H., P. Zheng, and X. Z. Peng 2002. Interitance of RAPD markers in an interspecific F1 hybrid of grape between Vitis quinquangularis and V. vinifera. Sci. Hort. 93:19-28.
Madrid, M. P., P. A. Di, and M. I. Roncero 2003. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol. 47:257-266.
Mes, J. J.,M. A. Haring, and B. J. C. Cornelissen, 2000. Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum. Mol Gen Genet. 263:271-280.
Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor.
Misra, A., K. Chosdol, C. Sarkar, A. K. Mahapatra, and S. Sinha 2001. Alteration of a sequence with homology to human endogenous retrovirus (HERV-K) in primary human glioma: implications forviral repeat mediated rearrangement. Mutation Res. 484:53—59.
Mishra, P. K., R. T.V. Fox, and A. Culham. 2002. Restriction analysis of PCR amplified nrDNA regions revealed intraspecific variation within populations of Fusarium culmorum. FEMS Microbiol. Lett. 215:291-296.
Mishra, P. K., R. T.V. Fox, and A. Culham. 2003. Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol. Lett. 218:329-332.
Monique, de N., L. Nabben, and K. Wernars. 1996. Isolation of Fusarium DNA for molecular analysis with and with and without mechanical cell disruption. J. Microbiol. Meth. 27:13-17.
Namiki, F., M. Matsunaga , M. Okuda, I. Inoue, K. Nishi , Y. Fujita, and T. Tsuge 2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant Microb. Interact. 14:580-584.
Narongwanichgarn, W., E. Kawaguchi, N. Misawa, Y. Goto, T. Haga, and T. Shinjo 2001. Differentiation of Fusobacterium necrophorum subspecies from bovine pathological lesions by RAPD-PCR. Veterin. Microbiol. 82:383-388.
Nelson, P. E. 2001. Fusarium : Paul E. Nelson Memorial Symposium. St. Paul, Minn.:American Phytopathology Society Press.
Norris, D. E. 2002. Genetic markers for study of the anopheline vectors of human malaria. Intern. J. Parasitol. 32:1607—1615.
Orlikowski, L. B., C. Skrzypczak, and A. Jaworska-Marosz 2002. Growth and sporulation of some pathogenic fungi in the presence of grapefruit extract. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol. Wet. 67:315-320.
Osek, J. 2000. Virulence factors and genetic relatedness of Escherichia coli strains isolated from pigs with post-weaning diarrhea. Veter. Microbiol. 71:211- 222.
Queiroz, M. V., and M.-J. Daboussi 2003. Impala, a transposon from Fusaium oxysporum, is active in the genome of Penicillium griseoroseum. FEMS Microbiol. Lett. 218: 317-321.
Ramirez, L., V. Muez, M. Alfonso, A. G. Barrenechea, L. Alfonso, and A. G. Pisabarro 2001. Use of molecular markers to differentiate between commercial strains of the button mushroom Agaricus bisporus. FEMS Microbial. Lett. 198:45-48.
Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. 2nd ed. Molecular Cloning. A Laboratory Manual, Cold Spring Habor Laboratory, New York.
Sivaramakrishnan, S., S. Kannan, and S. D. Singh 2002. Genetic variability of Fusarium wilt pathogen isolates of chickpea (Cicer arietinum L.) assessed by molecular markers. Mycopathologia 155 :171-178.
Skovgaard, K., L. Bodker, and S. Rosendahl 2002. Population and pathogenicity of members of the Fusarium oxysporum isolated from soil and root necrosis of pea (Pisum sativum L.). FEMS microbial. Ecol. 42:367-374.
Sun, S. K., and J. W. Huang 1996. Plant Fusarium Diseases in Taiwan. Shih Way Publishers Press, Taiwan.
Takaya, N. 2002. Dissimilatory nitrate reduction metabolisms and their control in fungi. J. Biosci. Bioengin. 94:506-510.
Tantaoui, A., M. Ouinten, J.-P. Geiger, and D. Fernandez 1996. Characterization of a single clonal lineage of Fusarium oxysporum f. sp. albedinis causing bayoud disease of data palm in Morocco. Phytopathology 86:787-792.
Tong, J., S.A. Lehnert, K. Byrne, H.S. Kwan, and K.H. Chu 2002. Development of polymorphic EST markers in Penaeus monodon: applications in penaeid genetics. Aquaculture 208:69-79.
Tzatzarakis, M. N., A. M. Tsatsakis, E. Charvalos, and D. Vakalounakis 2001. Comparison of in vitro activities of amphotericin, clotrimazole, econazole, miconazole, and nystatin against Fusarium oxysporum. J. Environ. Sci Health B. 36:331-340.
Wang, P.-H., H. S. Lo, and Y. Yeh 2001. Identification of F. oxysporum cucumerinum and F. oxysporum luffae by RAPD-generated DNA probes. Lett. Appl. Microbiol. 33:397-401.
Williams, J. G. K. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.
Wilson, K. 1987. Preparation of genomic DNA from bacteria. In Current protocols in molecular biology (Ausubel et al., ed.), vol. 1 pp. 2.4.1-2.4.5. Wiley Interscience, Cambridge, Massachusetts.
Youssuf, A. H. G. 1999. RAPD profile analysis of isolates belonging to different formae speciales of Fusarium oxysporum. Cytologia 64:269-276.
Zhang, Z. L., P. M. Harrison, and M. Gerstein 2002. Digging deep for ancient relics: a survey of protein motifs in the intergenic sequence of four eukaryotic genomes. J. Mol. Biol. 323:811-822.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top