跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.180) 您好!臺灣時間:2025/11/30 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉宏
研究生(外文):Chia-Hung Wang
論文名稱:胃幽門螺旋桿菌單股DNA結合蛋白晶體結構之研究
論文名稱(外文):Crystallographic Structural Studies of Single-Stranded DNA Binding Protein from Helicobacter pylori
指導教授:孫玉珠
指導教授(外文):Yuh-Ju Sun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:72
中文關鍵詞:胃幽門螺旋桿菌單股DNA結合蛋白蛋白晶體結構
外文關鍵詞:Helicobacter pyloriSingle-Stranded DNA Binding ProteinCrystallographic Structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在DNA的代謝中,如DNA複製、DNA重組及DNA修復中,單股DNA結合蛋白扮演相當重要的角色。在胃幽門螺旋桿菌中,單股DNA結合蛋白是由ssb基因所轉錄出來的,並且含有179個殘基。我們使用一種截尾突變的胃幽門螺旋菌單股DNA結合蛋白(含有殘基1~134)來和35股的單股DNA形成複合體結晶。我們使用X-ray晶體繞射法來決定此蛋白複合體的結構,最高的解析度到達3.1。胃幽門螺旋菌單股DNA結合蛋白在溶液中是以四聚體的形式存在者,而在蛋白質N端的區域(殘基數1~115)含有一種特殊的蛋白質摺疊區,稱為寡核甘酸結合摺疊區。其它種類的原核生物單股DNA結合蛋白,例如大腸桿菌中,也是含有相同的寡核甘酸結合摺疊區,用來作為單股DNA結合的區域。但是在胃幽門螺旋菌單股DNA結合蛋白複合體晶體結構的研究,我們發現對於單股DNA的結合方式與之前所己知的大腸桿菌單股DNA結合蛋白有很大的不同。胃幽門螺旋菌單股DNA結合蛋白利用疊堆作用力及靜電力來與單股DNA作用。有一些鹼性的殘基,例如精胺酸10、精胺酸35、半胱胺酸108形成相當明顯的鹼性區來與單股DNA作用,另外有兩個芳香性的胺基酸-苯丙胺酸50及色胺酸84以疊堆作用的方法來作用。而由於殘基數116~134的區域較動態無法固定,因此我們仍無法確定其3D結構。而在單股DNA結合蛋白的C端,含有相當酸性的尾端,而被推論用來作為蛋白質-蛋白質之間的交互作用,而此C端作用並且可能可以引發其它結合的蛋白質活性。
Single-stranded DNA binding protein (SSB) plays an important role in DNA metabolism, such as DNA replication, repair, and recombination. SSB of Helicobacter pylori (HpSSB) is encoded by the ssb gene and contains 179 residues. The crystal structure of truncated HpSSB protein (residue 1-134) complexed with dT(pT)34 was determined at 3.1  resolution by X-ray crystallographic method. HpSSB exists as a tetramer in both crystal and solution states. The N-terminal domain (residue 1-115) contains an OB-fold (oligonucleotides binding fold), which is similar with other species like E. coli, to function as an ssDNA binding domain. However, the ssDNA binding mode of tmHpSSB134 exhibits a considerable variability with comparison to that of E. coli. In the structure of tmHpSSB134-dT(pT)34 complex, the ssDNA wraps on the OB-fold with mainly electrostatic and stacking interactions. Several basic residues, Arg10, Arg35, and Lsy108, on the surface of tmHpSSB134 form a significant patch to accommodate the ssDNA binding. Furthermore, two aromatic residues, Phe50 and Trp84, interact with thymidine by stacking interaction. The structure of residues 116-134 was unable to be determined because of its flexibility. Many evidences reveal that the acidic C-terminal tail of SSB might participate in the protein-protein interaction. The C-terminal interactions may trigger the activities of the associated proteins in DNA metabolism.
Chapter 1 Introduction
1.1 Helicobacter pylori
1.2 The target gene hp1245
1.3 Characteristics of E. coli SSB
1.4 The EcoSSB-ssDNA complex
1.5 The associated proteins of SSB
1.6 Structures of single-stranded DNA binding proteins
Chapter 2 Material and Methods
2.1 Cloning, protein expression and purification
2.2 HpSSB-oligonucleotides complex formation
2.3 Analytical gel filtration chromatography
2.4 Analytical ultracentrifugation
2.5 Crystallization
2.6 Data collection and processing
2.7 Structure determination and refinement
Chapter 3 Results and Discussion
3.1 Protein purification and identification
3.1.1 Full-length HpSSB protein
3.1.2 Truncated-mutation HpSSB protein (tmHpSSB134)
3.2 HpSSB-dT(pT)34 complex
3.2.1 Full-length HpSSB-dT(pT)34 complex
3.2.2 tmHpSSB134-dT(pT)34 complex
3.3 Protein crystals
3.4 Space group determination
3.5 The structural phase
3.6 Model building
3.7 Structure refinement
3.8 Structure of tmHpSSB134 protein monomer
3.9 Structure of tmHpSSB134 protein tetramer
3.10 dT(pT)34 conformation
3.11 Residues involved in ssDNA binding
3.12 Crystal packing in tmHpSSB134-dT(pT)34 complex
Chapter 4 Discussion
4.1 Different ssDNA binding mode between HpSSB and EcoSSB
4.2 Potential electrostatic surface of SSBs
4.3 The linkage of ssDNA between SSBs
Figures and Tables
Reference
1. Danesh, J. (1999). Helicobacter pylori and gastric cancer: time for mega-trials? Br J Cancer 80, 927-9.
2. Scheiman, J. M. & Cutler, A. F. (1999). Helicobacter pylori and gastric cancer. Am J Med 106, 222-6.
3. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-47.
4. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328-33.
5. Lacy, B. E. & Rosemore, J. (2001). Helicobacter pylori: ulcers and more: the beginning of an era. J Nutr 131, 2789S-2793S.
6. Kinebuchi, T., Shindo, H., Nagai, H., Shimamoto, N. & Shimizu, M. (1997). Functional domains of Escherichia coli single-stranded DNA binding protein as assessed by analyses of the deletion mutants. Biochemistry 36, 6732-8.
7. Arcus, V. (2002). OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr Opin Struct Biol 12, 794-801.
8. Venclovas, C., Ginalski, K. & Kang, C. (2004). Sequence-structure mapping errors in the PDB: OB-fold domains. Protein Sci 13, 1594-602.
9. Raghunathan, S., Ricard, C. S., Lohman, T. M. & Waksman, G. (1997). Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc Natl Acad Sci U S A 94, 6652-7.
10. Lohman, T. M. & Overman, L. B. (1985). Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 260, 3594-603.
11. Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7, 648-52.
12. Savvides, S. N., Raghunathan, S., Futterer, K., Kozlov, A. G., Lohman, T. M. & Waksman, G. (2004). The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci 13, 1942-7.
13. Cadman, C. J. & McGlynn, P. (2004). PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32, 6378-87.
14. Reddy, M. S., Guhan, N. & Muniyappa, K. (2001). Characterization of single-stranded DNA-binding proteins from Mycobacteria. The carboxyl-terminal of domain of SSB is essential for stable association with its cognate RecA protein. J Biol Chem 276, 45959-68.
15. Morimatsu, K. & Kowalczykowski, S. C. (2003). RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11, 1337-47.
16. Han, E. S., Cooper, D. L., Persky, N. S., Sutera, V. A., Jr., Whitaker, R. D., Montello, M. L. & Lovett, S. T. (2006). RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res 34, 1084-91.
17. Kantake, N., Madiraju, M. V., Sugiyama, T. & Kowalczykowski, S. C. (2002). Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc Natl Acad Sci U S A 99, 15327-32.
18. Hegde, S. P., Qin, M. H., Li, X. H., Atkinson, M. A., Clark, A. J., Rajagopalan, M. & Madiraju, M. V. (1996). Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci U S A 93, 14468-73.
19. Handa, P., Acharya, N. & Varshney, U. (2001). Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 276, 16992-7.
20. Acharya, N. & Varshney, U. (2002). Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 318, 1251-64.
21. Richard, D. J., Bell, S. D. & White, M. F. (2004). Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res 32, 1065-74.
22. Genschel, J., Curth, U. & Urbanke, C. (2000). Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381, 183-92.
23. Witte, G., Urbanke, C. & Curth, U. (2003). DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res 31, 4434-40.
24. Gulbis, J. M., Kazmirski, S. L., Finkelstein, J., Kelman, Z., O'Donnell, M. & Kuriyan, J. (2004). Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 271, 439-49.
25. Bochkarev, A. & Bochkareva, E. (2004). From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14, 36-42.
26. Kerr, I. D., Wadsworth, R. I., Cubeddu, L., Blankenfeldt, W., Naismith, J. H. & White, M. F. (2003). Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. Embo J 22, 2561-70.
27. Bernstein, D. A., Eggington, J. M., Killoran, M. P., Misic, A. M., Cox, M. M. & Keck, J. L. (2004). Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci U S A 101, 8575-80.
28. Saikrishnan, K., Jeyakanthan, J., Venkatesh, J., Acharya, N., Sekar, K., Varshney, U. & Vijayan, M. (2003). Structure of Mycobacterium tuberculosis single-stranded DNA-binding protein. Variability in quaternary structure and its implications. J Mol Biol 331, 385-93.
29. Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 1606-19.
30. Otwinowski, Z. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode Methods in Enzymology 276, p.307-326.
31. TONG, L. (1997). Rotation Function Calculations with GLRF Program METHODS IN ENZYMOLOGY 276, 594-611.
32. Kantardjieff, K. A. & Rupp, B. (2003). Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12, 1865-71.
33. A.Vagin. (1997). MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022-1025.
34. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-21.
35. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-55.
36. Laskowski. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top