跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾嘉珍
研究生(外文):Tseng Chia-Jen
論文名稱:建立探討細胞週期及細胞凋亡之新模型
論文名稱(外文):Establishment of new model system to investigate cell cycle and apoptosis
指導教授:何元順
指導教授(外文):Ho Yuan-Soon
學位類別:碩士
校院名稱:台北醫學院
系所名稱:生物醫學技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:94
中文關鍵詞:細胞週期細胞凋亡細胞週期停滯微小管p53p21caspase
外文關鍵詞:cell cycleapoptosiscell cycle arrestmicrotubulep53p21caspase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
Miconazole是全世界臨床上使用的口服抗黴菌藥。此論文是第一篇經研究證實Miconazole能使癌細胞停滯在G0/G1時期,進而抑制癌細胞的生長。由過去的研究結果指出,不同的癌症細胞,其p53的表現會有些許差異。藉由流式細胞儀的分析以及細胞生長曲線的結果,我們觀察到由Miconazole誘發的癌細胞生長週期停滯的效果,在COLO 205 和Hep G2細胞(具有wild-type p53 )比HT 29 (p53 His273 突變)、HL60(p53 null)及Hep 3B細胞(缺少p53基因)要好。我們認為p53的表現及經由p53調控的細胞生長週期路徑和Miconazole所引發的癌細胞G0/G1時期停滯的過程有強烈的相關性。同時,Miconazole會引起大腸癌細胞株p53,p21,p27等蛋白質表現量增加,且抑制Cyclin D1、D3及CDK4等蛋白質的表現,而且Miconazole還會經由活化caspase(s)誘發細胞凋亡的發生。由以上結果,我們證實了Miconazole誘發人類惡性癌細胞生長週期停滯及凋亡的分子機制,所以我們認為Miconazole具備的這些效果,使其成為具有潛力的癌症治療藥物。
Podophyllotoxin是目前用來治療尖形濕疣的主要藥物,在1940年以前曾用來嘗試治療癌症,但因其毒性所以慢慢被禁用。本研究是就此藥會對微小管造成分解作用進而探討Podophyllotoxin對癌細胞的細胞週期和凋亡的分子作用機轉。我們的研究顯示,相同的劑量(2mM)可造成HT29百分之九十以上的細胞停滯在G2/M期,但是對HL60卻是促進細胞凋亡。進而研究其機轉,發現PD會使HT29細胞內的MPF活性上升,而在HL60細胞則可以在短時間(六到十二小時)引發Bcl-2的磷酸化、caspases的活化,最後造成細胞凋亡。
因此我們認為Podophyllotoxin可用在HT29細胞研究G2/M週期停滯,或是用在HL60細胞來探討Bcl-2磷酸化的機轉的絕佳工具。而且目前臨床上常發生單獨使用一種化療藥物時容易使癌細胞出現抗藥性而導致療效降低,所以將PD與其他抗癌藥物併用預期應會有良好的效果。

In this study, we have demonstrated that miconazole, a widely used oral-antifungal agent, can inhibit cell cycle progression in G0/G1 phase and is a potent inhibitor of cyclin dependent kinase (CDK4). DNA fragmentation analysis revealed that apoptosis was induced in a dose dependent manner by miconazole treatment. The caspase 3 was activated and its specific substrate, poly(ADP-ribose)polymerase, was degraded at 18-24 h after miconazole treatment. Dose-dependent experiment was performed and demonstrated that the bax gene expression was elevated. In this study, we used different type of human cancer cells with various p53 status to investigate the mechanisms of miconazole-induced G0/G1 arrest. Our results demonstrated that miconazole-treated cells had an approximately 6-fold increased in the expression of p21 and p27. Whereas Cyclin D3 and cyclin D1 were down regulated in a dose- and time-dependent manner. Moreover, the expression of PCNA, cdk2, and cyclin E levels were not significant change when compared with untreated cells. CDK4 but not CDK2, activity immunoprecipitated from cells treated with miconazole was markedly inhibited. Concomitantly, hypophosphorylation form of the Rb protein was detected in samples treated with miconazole.
In this study, we have demonstrated that apoptosis was easily induced by treatment with a low dose (0.02mM) of podophyllotoxin (PD) in HL60 cells. However, from the flow cytometry and western analysis we found that the same dose of PD resulted in induction of G2/M cell cycle arrest in HT29 cells. Immunofluoresence staining analysis revealed that the PD-induced mitotic arrest is due to microtubule degradation. PD-induced G2/M arrest were characterized by (a) induction of abnormal mitotic spindle formation, (b) elevation of cyclin B1/cdc2 and cdk7 kinase activity, and (c) down-regulation of Wee-1 protein expression. On the other hand, caspase 3、8 and 9 activation, Bcl-2 hyperphosphorylation and the release of cytochrome c from mitochondria were demonstrated to be involved in PD-induced apoptosis. Taken together, these results suggest that PD could be used in combination with other anticancer drugs in chemotherapy.

第一部份:Miconazole誘發人類惡性癌細胞G0/G1週期停滯與凋亡之分子機制研究
中文摘要……………………………………..2
英文摘要……………………………………..3
緒論…………………………………………..4-17
實驗材料和方法……………………………..18-34
結果…………………………………………..35-45
討論…………………………………………..46-50
參考文獻……………………………………..51-65
第二部份:Podophyllotoxin 誘發人類惡性細胞凋亡與G2/M週期停滯之分子機制
中文摘要……………………………………..67
英文摘要……………………………………..68
緒論…………………………………………..69-73
實驗材料和方法……………………………..74-75
結果…………………………………………..76-84
討論…………………………………………..85-89
參考文獻……………………………………..90-94

1. J.F.R. Kerr, A.H. Wyllie, and A.R. Currie: APOPTOSIS: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. Brit J Cancer, 26: 239-257, 1972.
2. G.T. Williams, and C.A. Smith: Molecular Regulation of Apoptosis: Genetic Controls on Cell Death. Cell, 74: 777-779, 1993.
3. B.K. Agnes: Redefining cell death. Am J Pathol, 146: 1-2, 1995.
4. J.C. Reed: Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol, 11: 68-75, 1999.
5. A. Fraser and G. Evan: A License to Kill. Cell, 85: 781-784, 1996.
6. H.W. Andrew: Apoptosis and carcinogenesis. Eur J Cell Biol, 73: 189-197, 1997.
7. H.A. Leaver, I.R. Whittle, S.B. Wharton, and J.W. Ironside: Apoptosis in human primary brain tumours. Brit J Neurosurg, 12: 539-46, 1998.
8. V.J. Dzau, G.H. Gibbons, M. Mann, and R. Braun-Dullaeus: Future horizons in cardiovascular molecular therapeutics. Am J Cardiol, 80: 331-391, 1997.
9. L.H. Boise, M. Gonzalez-Garcia, C.E. Postema, L. Ding, T. Lindsten, L.A. Turka, and D. Hockenbery: Defining apoptosis. Am J Pathol, 146: 16-19, 1995.
10. A. Torriglia, C. Negri, E. Chaudun, E. Prosperi, Y. Courtois, M.F. Counis, A.I. Scovassi: Differential involvement of DNases in HeLa cell apoptosis induced by etoposide and long term-culture. Cell Death Differ, 6: 234-44, 1999.
11. A.P. Leach: Apoptosis: molecular mechanism for physiologic cell death. Clin Lab Sci, 11: 346-49, 1998.
12. T. Shinohara, K. Ohshima, H. Murayama, M. Kikuchi, Y. Yamashita and T. Shirakusa: Apoptosis and proliferation in gastric carcinoma: the association with histological type. Histopathology, 29: 123-29, 1996.
13. G. Kroemer, B. Dallaporta and M. Resche-rigon: The mitochondrial death/life regulator in apoptosis and necrosis. Annv Rev Physiol, 60: 619-42, 1998.
14. R. Fotedar, L. Diederich, A. Fotedar: Apoptosis and the cell cycle. Prog Cell Cycle Res, 2: 147-63, 1996.
15. E. Yonish-Rouach, C. Choisy, V. Deguin, C. Breugnot, E. May: The role of p53 as a transcription factor in the induction of apoptosis. Behring Institute Mitteilungen, 97: 60-71, 1996.
16. G.K. Dasika, S.C. Lin, S. Zhao, P. Sung, A. Tomkinson, E.Y. Lee: DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene, 18: 7883-99, 1999.
17. E. Yonish-Rouach: The p53 tumour suppressor gene: a mediator of a G1 growth arrest and of apoptosis. Experientia, 52: 1001-7, 1996.
18. J. Abraham, J. Kelly, P. Thibault, S. Benchimol: Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry. J Mol Biol, 295: 853-64, 2000.
19. K. Sandau, J. Pfeilschifter and B. Brune: Nitric Oxide and Superoxide Induced p53 and Bax Accumulation during Mesangial Cell Apoptosis. Kidney Int, 52: 378-86, 1997.
20. Y.S. Ho, Y.J. Wang and J.K. Lin: Induction of p53 and p21/WAF1/CIP1 Expression by Nitric Oxide and Their Association with Apoptosis in Human Cancer Cells. Mol Carcinogen, 16: 20-31, 1996.
21. A.S. Lundberg, R.A. Weinberg: Control of the cell cycle and apoptosis. Eur J Cancer, 35: 531-9, 1999.
22. J.R. Jenkins, K. Rudge, P. Chumakov, G.A. Currie: The cellular oncogene p53 can be activated by mutagenesis. Nature, 317(6040):816-8, 1985
23. A.J. Levine: p53, the cellular gatekeeper for growth and division. Cell, 88: 323-31, 1997.
24. K.M. Ryan, G.D. Birnie: Myc oncogenes: the enigmatic family. Biochem J, 314: 713-21, 1996.
25. B. Kim, P.S. Leventhal, A.R. Saltiel and E.L. Feldman: Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation. J Biol Chem, 272: 21268-73, 1997.
26. C.M. Fang, C. Shi and Y.H. Xu: Deregulated c-myc expression in quiescent CHO cells induces target gene transcription and subsequent apoptotic phenotype. Cell Res, 9: 305-14, 1999.
27. S.E. Shackney, T.V. Shankey: Cell cycle models for molecular biology and molecular oncology: exploring new dimensions. Cytometry, 35: 97-116, 1999.
28. Y. Tsujimoto, E. Jaffe, J. Cossman, J. Gorham, P.C. Nowell and C.M. Croce: Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature, 315: 340-3, 1985.
29. J.C. Reed: Bcl-2 Family Proteins: Regulators of Chemoresistance in Cancer. Toxicol Lett, 82: 155-58, 1995.
30. D. Han, J. Chatterjee, P. Early, E.A. Pantazis, and J.H. Wyche: Isolation and characterization of an apoptosis-resistant variant of human leukemia HL-60 cells that has switched expression from Bcl-2 to Bcl-xL. Cancer Res, 56: 1621-28, 1996.
31. J.J. Hunter and T.G. Parslow: A peptide sequence from Bax that converts Bcl-2 into an activator of apoptosis. J Biol Chem, 271: 8521-24, 1996.
32. J.C. Reed: Double identity for proteins of the Bcl-2 family. Nature, 387: 773-6, 1997.
33. S.J. Korsmeyer: BCL-2 gene family and the regulation of programmed cell death. Cancer Res, 59: 1693-1700, 1999.
34. M.C. Gerald: Caspases: the executioners of apoptosis. Biochem J, 326:1-16,1997.
35. M.V. de Craen, P. Vandenabeele, W. Declercq, I.V. den Brande, G.V. Loo, F. Molemans, P. Schotte, W.V. Criekinge, R. Beyaert, and W. Fiers: Characterization of seven murine caspase family members. FEBS Lett, 403: 61-69,1997.
36. X. Liu, C.N. Kim, J. Pohl and X. Wang: Purification and characterization of an interleukin-1β converting enzyme family protease that activates cysteine protease p32 (CPP32). J Biol Chem, 271: 13371-6, 1996.
37. M. Tewari, L.T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D.R. Beidler, G.G. Poirier, G.S. Salvesen, and V.M. Dixit: Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-Ribose) polymerase. Cell, 81:801-9,1995.
38. X. Liu, H. Zou, C. Slaughter, and X. Wang: DFF, a heterdimeric protein that functions downstream of Caspase-3 to trigger DNA fragmentation during apoptosis. Cell, 89: 175-84, 1997.
39. A. Kangas, D.W. Nicholson, E. Hottla: Involvement of CPP32/ Caspase-3 in c-Myc-induced apoptosis. Oncogene, 16: 387-98, 1998.
40. G.S. Salvesen, V.M. Dixit: Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA, 96: 10964-67, 1999.
41. H. Douglas: The hallmark of cancer. Cell, 100: 57-70, 2000.
42. M.C. Gruda, K. Kovary, R. Metz and R. Bravo: Regulation of Fra-1 and Fra-2 phosphorylation differs during the cell cycle of fibroblasts and phosphorylation in vitro by MAP kinase affects DNA binding activity. Oncogene, 9: 2537-47, 1994.
43. B. Shan, C.Y. Chang, D. Jones and W.H. Lee: The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mole Cell Biol, 14: 299-309, 1994.
44. E. Livneh and D.D. Fishman: Linking protein kinase C to cell-cycle control. Eur J Biochem, 248: 1-9, 1997.
45. D. Cortez, G. Reuther, A.M. Pendergast: The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene, 15: 2333-42, 1997.
46. M.M. Kasten, A. Giordano: pRb and the cdks in apoptosis and the cell cycle. Cell Death Differ, 5: 132-40, 1998
47. A.S. Lundberg, R.A. Weinberg: Control of the cell cycle and apoptosis. Eur J Cancer, 35: 531-9, 1999.
48. Z. Darzynkiewicz. Cytometry of cyclin proteins. Cytometry, 25: 861-69, 1996.
49. J.E. Stephen: Cell cycle check points: preventing an identity crisis. Science, 274: 1664-72, 1996.
50. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol, 287: 821-8, 1999.
51. M. Hengstschlager, K. Braun, T. Soucek, A. Miloloza and E. Hengstschlager —Ottnad: Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle. Mutat Res, 436: 1-9, 1999.
52. C. Dickson, V. Fantl, C. Gillett, S. Brookes, J. Bartek, R. Smith, C. Fisher, D. Barnes and G. Peters: Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Lett, 90: 43-50, 1995.
53. M. Hall and G. Peters: Genetic alterations of cyclins, cyclin- dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res, 68: 67-108, 1996.
54. M. Serrano, G.J. Hannon and D. Beach: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366: 704-7, 1993.
55. V. Baldin, J. Lukas, M.J. Marcote, M. Pagano and G. Draetta: Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev, 7: 812-21, 1993.
56. J. Kato, H. Matsushime, S.W. Hiebert, M.E. Ewen and C.J. Sherr: Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev, 7: 331-42, 1993.
57. S.J. Weintraub, K.N. Chow, R.X. Luo, S.H. Zhang, S. He and D.C. Dean: Mechanism of active transcriptional repression by the retinoblastoma protein. Nature, 375: 812-5, 1995.
58. C.J. Sherr: G1 phase progression: cycling on cue. Cell, 79: 551-5, 1994.
59. Y. Geng, E.N. Eaton, M. Picon, J.M. Roberts, A.S. Lundberg, A. Gifford, C. Sardet and R.A. Weinberg: Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene, 12: 1173-80, 1996.
60. M. Pagano, R. Pepperkok, F. Verde, W. Ansorge and G. Draetta: Cyclin A is required at two points in the human cell cycle. EMBO J, 11: 961-71, 1992.
61. K.A. Won and S.I. Reed: Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J, 15: 4182-93, 1996.
62. V. Dulic, W.K. Kaufmann, S.J. Wilson, T.D. Tlsty, E. Lees, J.W. Harper, S.J. Elledge and S.I. Reed: p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell, 76: 1013-23, 1994.
63. C.J. Sherr, J.M. Roberts: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 13: 1501-12, 1999.
64. S. Waga, G.J. Hannon, D. Beach and B. Stillman: The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature, 369: 574-578, 1994.
65. J.Y. Kato, M. Matsuoka, K. Polyak, J. Massague and C.J. Sherr: Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell, 79: 487-96, 1994.
66. J. Gerhert, M. Wu and M. Kirschner: M-phase promoting factors from eggs of xenopus laevis. Cytobios, 43: 235-247, 1985.
67. P. Clute and J. Pines: Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol, 1: 82-7, 1999.
68. J. Li, A.N. Meyer and D.J. Donoghue: Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci USA, 94(2): 502-7, 1997.
69. S.J. Elledge: Cell cycle checkpoints: preventing an identity crisis. Science, 274: 1664-72, 1996.
70. A. Eastman and J.R. Rigas: Modulation of apoptosis signaling pathways and cell cycle regulation. Semin Oncol, 26: 7-16, 1999.
71. Ronit Vogt Sionov and Ygal Haupt: The cellular response to p53: the decision between life and death. Oncogene, 18: 6145-6157, 1999.
72. M. Hollstein, D. Sidransky, B. Vogelstein and C.C. Harris: p53 mutations in human cancers. Science, 253: 49-53, 1991.
73. M.H. Lee, I. Reynisdottir and J. Massague: Cloning of p57kip2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev, 9: 639-649.
74. M. Ashcroft and K.H. Vousden: Regulation of p53 stability. Oncogene, 18: 7637-43, 1999.
75. J. Momand, G.P. Zambetti, D.C. Olson, D. George and A.J. Levine: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69: 1237-45, 1992.
76. S. Banin, L. Moyal, S.-Y. Shieh, Y. Taya, C.W. Anderson, L. Chessa, N. I. Smorodinsky, C. Prives, Y. Reiss, Y. Shiloh and Y. Ziv: Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281: 1674-77, 1998.
77. D. Bulavin, S. Saito, M.C. Hollander, K. Sakaguchi, C.W. Anderson, E. Appella and A.J. Fornace: Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J, 18: 6845-54, 1999.
78. S.Y. Shieh, Y. Taya and C. Prives: DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J, 18: 1815-23, 1999.
79. S.Y. Shieh, M. Ikeda, Y. Taya and C. Prives: DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91: 325-34, 1997.
80. T. Unger, T. Juven-Gershon, E. Moallem, M. Berger, R. Vogt Sionov, G. Lozano, M. Oren and Y. Haupt: Critical role of Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J, 18: 1805-14, 1999.
81. C.J. Sherr: Tumor surveillance via the ARF-p53 pathway. Genes Dev, 12: 2984-91, 1998.
82. R. Honda, H. Yasuda: Association of P19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J, 18: 22-27, 1999.
83. M. Ashcroft, Y. Taya and K.H. Vousden: Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol, 20: 3224-33, 2000.
84. W.G. Nelson, M.B. Kastan: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol, 14: 1815-23, 1994.
85. G.W. Demers, S.A. Foster, C.L. Halbert and D.A. Galloway: Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc Natl Acad Sci USA, 91: 4382-6, 1994.
86. X.W. Wang, Q. Zhan, J.D. Coursen, M.A. Khan and H.U. Kontuy: GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA, 96: 3706-11, 1999.
87. Anonymous: Miconazole--a new topical antifungal drug. Med Lett Drugs Ther, 16: 97-8, 1974
88. J.M. Proost, F.M. Maes-Dockx, M.O. Nelis, J.M. Van Cutsem: Miconazole in the treatment of mycotic vulvovaginitis. Am J Obs Gyn, 112: 688-92, 1972.
89. R.C. Heel, R.N. Brogden, G.E. Pakes, T.M. Speight, G.S. Avery: Miconazole: a preliminary review of its therapeutic efficacy in systemic fungal infections. Drugs. 19: 7-30, 1980.
90. J. Symoens: Clinical and experimental evidence on miconazole for the treatment of systemic mycoses: a review. Proc Royal Soc Med, 70 Suppl 1:4-8, 1977.
91. H. Brincker: Miconazole in oral candidiasis. Process Royal Soc Med, 70, 1:29-31, 1977.
92. R.J. Holt: Topical pharmacology of imidazole antifungals. J Cuta Pathol, 3: 45-59, 1976.
93. C.L. Terrell: Antifungal agents. Part II. The azoles. Mayo Clin Proc, 74: 78-100, 1999.
94. J.R. Graybill: The future of antifungal therapy. Clin Infec Dis, 22: S166-78, 1996.
95. G.P. Bodey: Azole antifungal agents. Clin Infec Dis, 14, 1:S161-9, 1992.
96. R.A. Fromtling: Imidazoles as important antifungal agents: an overview. Drugs Today, 20: 325, 1984.
97. R. Haffiner and M. Oren: Biochemical properties and biological effects of p53. Curr Opin Genet Dev, 50: 84-90, 1995.
98. M.B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, R.W. Craig: Participation of p53 protein in the cellular response to DNA damage. Cancer Res, 51: 6304-11, 1991.
99. S. Bates and K.H. Vousden: Mechanisms of p53-mediated apoptosis. Cell Mol Life Sci, 55: 28-37, 1999.
100. M. Liu and J.C. Pelling: UV-B/A irradiation of mouse keratinocytes results in p53-mediated WAF1/CIP1 expression. Oncogene, 10: 1955-60, 1995.
101. C.W. Lee, T.S. Sorensen, N.L. Shikama, and N.B. Thangue: Functional interplay between p53 and E2F through co-activator p300. Oncogene, 16: 2695-710, 1998.
102. H. Willers, E.E. McCarthy, B. Wu, H. Wunsch, W. Tang, D.G. Taghian, F. Xia, and S.N. Powell: Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene, 19: 632-9, 2000.
103. N.D. Lakin and S.P. Jackson: Regulation of p53 in response to DNA damage. Oncogene, 18: 7644-55, 1999.
104. T. Dragovich, C.M. Rudin and C.B. Thompson: Signal transduction pathways that regulate cell survival and cell death. Oncogene, 17: 3207-13, 1998.
105. V. Bouvard, T. Zaitchouk, M. Vacher, A. Duthu, M. Canivet, C. Choisy-Rossi, M. Nieruchalski and E. May: Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionizing irradiation in mice. Oncogene, 19: 649-60, 2000.
106. M. Akashi, Y. Osawa, H.P. Koeffler and M. Hachiya: p21WAF1 expression by an activator of protein kinase C is regulated mainly at the post-transcriptional level in cells lacking p53: important role of RNA stabilization. Biochem J, 337: 607-16, 1999.
107. K.F. Macleod, N. Sherry, G. Hannon, D. Beach, T. Tokino, K. Kinzler, B. Vogelstein and T. Jacks: p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev, 9: 935-44, 1995.
108. D.E. Wood and E.W. Newcomb: Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem, 274: 8309-15, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 建立一個新的預測指標以評估非阻塞性無精蟲症患者之睪丸取精結果
2. 人類尿液萃取物對於大鼠神經膠質瘤細胞株之生長抑制與凋亡作用
3. 男性不孕症患者之生育概念、不孕療程憂慮及其焦慮狀態及治療選項接受度之相關研究
4. (一)Dextromethorphan對於預防幼鼠嗎啡脫癮症狀的作用(二)長期給予母鼠嗎啡對其所生幼鼠腦中NMDA受體表現的影響(三)長期給予母鼠嗎啡對其所生幼鼠腦中spectrin的表現以及分解作用的影響
5. 血紅蛋白結構變動與溫度效應之關係b2His與b6Glu部位結構之重要性
6. 麩胱■■硫轉換■cGSTM1-1與不同受質形成複合體之結構及功能研究
7. 小鼠介白素15受體alpha次單元基因起動子之分析
8. Mcl-1蛋白之功能解析-由找尋其交互作用之蛋白探討
9. 隨機改變重鏈CDR3片段的類風濕性因子之突變與特徵分析
10. 利用紅藻胺酸引發抽搐之幼鼠來探討神經和細胞激素之表現
11. p44/42MAPK及NF-κB在Phorbol-12-Myristate-13-Acetate引發人類肺臟上皮細胞環氧酵素-2表現的訊息傳遞路徑之角色
12. 利用人類抗體基因庫來篩選出對C型肝炎病毒NS3抗原具有特異性之抗體片段的分析
13. 革蘭氏陽性菌細胞壁成分lipoteichoicacid引發上皮細胞環氧酵素-2表現的訊號傳遞路徑之探討
14. Terfenadine誘發人類癌細胞G0/G1週期停滯與凋亡之分子機制探討
15. 1.長期給予MPTP對小黑鼠血中促腎上腺皮質素(ACTH)以及促腎上腺皮質釋放激素(CRF)表現的影響2.長期給予MPTP對小黑鼠腦中NMDA受體多亞型蛋白以及細胞骨架蛋白(spectrin)表現的影響