跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張品歆
研究生(外文):Chang, Pin-Hsin
論文名稱:高介電係數 /金屬閘極製程之靜電放電防護設計與研究
論文名稱(外文):ESD Protection Design in 28nm High-K / Metal Gate Process
指導教授:柯明道柯明道引用關係林群祐林群祐引用關係
指導教授(外文):Ker, Ming-DouLin, Chun-Yu
口試委員:吳重雨姜信欽陳勝利
口試委員(外文):Wu, Chung-YuJiang, Hsin-ChinChen, Shen-Li
口試日期:2014-11-4
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:70
中文關鍵詞:靜電放電防護高介電係數 /金屬閘極製程
外文關鍵詞:ESD28nm High-K / Metal Gate Process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:778
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
隨著製程的演進,元件的尺寸不斷的縮小,金氧半場效電晶體的閘極(gate)氧化層厚度越來越薄,以達到積體電路操作速度快以及低功耗的目的,然而,外在環境的靜電並沒有減少,雖然在50奈米以下的製程已經引入了高介電係數的材質以提高等效的氧化層厚度(Effective Oxide Thickness, EOT),然而元件對靜電的敏感度依舊很高,使得靜電放電(Electrostatic Discharge, ESD)防護成為先進製程中很重要的可靠度議題之一。
為了釋放高能量的靜電電流,在電晶體中寄生的雙極性電晶體(Bipolar Junction Transistor, BJT)扮演著重要的角色,在全晶片靜電放電防護架構中,於輸入/輸出(I/O)腳位(pin)和VDD電源線間使用閘極接VDD之P型金氧半場效電晶體(gate-VDD PMOS, GDPMOS),以及在輸入/輸出腳位和VSS電源線間使用閘極接地之N型金氧半場效電晶體(gate-grounded NMOS, GGNMOS)。在本論文中,為了達成靜電放電防護元件能承受更大的電流及高效率的使用面積之目的,在布局上使用多指狀(multi-finger)結構,而在GGNMOS中由於寄生的BJT之電流增益(beta gain )較大而導致驟回效應(snapback)明顯而造成先導通的指根上會先燒毀之不均勻導通現象,所以,增加通道寬度並沒有使NMOS的靜電耐受度呈線性上升,為了改善此情況,本論文中在每根指頭的源極(source)插入pickup使每根指狀結構的寄生BJT的基底(base)之電阻值相同,然而,由於相較於沒有加入pickup的寄生BJT之基底電阻較小以致不容易被導通(turn-on) ,因此,其靜電耐受度下降;另外,晶片驗證結果發現GDPMOS無論是加大通道寬度或者在源極插入pickup,其靜電耐受度皆維持在很低的值,因此在第四章中提出一個新穎的結構提高以PMOS為基底的靜電放電防護元件之靜電耐受度。以上研究在28奈米的高介電係數/金屬閘極製程下實現。
在第四章中提出了一個PMOS鑲嵌在傳統的矽控整流器(Silicon-Controlled Rectifier, SCR)中之結構,其使用了CMOS標準製造過程中,為了降低觸發電壓(trigger voltage, Vt1)會加在NMOS之汲極(drain)加入P型的靜電放電佈植(P-ESD Implant),所以不需要額外的光罩及花費,另外,相較於GDPMOS以及GGNMOS,此結構擁有單位面積下靜電耐受度較高,其中靜電耐受度包括人體靜電放電模型(Human-Body Model, HBM)及元件充電模型(Charged-Device Model, CDM)、均勻導通、寄生電容較小之特性,以及可免於栓鎖效應(latch-up)的危險等優點,因此,此設計非常適合使用在製造成本越來越昂貴、閘極氧化層厚度越來越薄以及操作電壓越來越低的先進製程中作為靜電放電防護的元件。此設計成功在28奈米的高介電係數 /金屬閘極製程下實現。

With the on-going shrinking of CMOS technologies, the devices in the integrated circuits (ICs) have been fabricated with ultra-thin gate oxide thickness to attain high speed and low power consumption. However, electrostatic discharge (ESD) events were not scaled down with the scaling in CMOS technologies. Although the high-k dielectric has been introduced in sub-50-nm CMOS technologies, the MOS transistors are still sensitive to ESD. Therefore, ESD has become the major concern of reliability for ICs in nanoscale CMOS technology.
To discharge the high ESD energy without causing damage to integrated circuits, the turn-on behavior of parasitic bipolar junction transistors (BJTs) inherent in NMOS or PMOS transistors plays an important role. The NMOS and the PMOS with gate connected to source have been used as the ESD clamp devices, that is to say, gate-grounded NMOS (GGNMOS) and gate-VDD PMOS (GDPMOS). In order to discharge more ESD current and use area efficiently, the transistors utilize the multi-finger structure. The GGNMOS has obvious snapback phenomenon due to large current gain of parasitic NPN BJT. The first turn-on finger will be burn out and results in nun-uniform turn-on issue. Thus, the ESD robustness is not increasing with enlarging the width of ESD devices. In this work, inserting inner pickups in source side of MOS transistors is to improve ESD level. Measurement results indicate that additional pickups decrease the ESD robustness of the NMOS transistors because the base resistor value becomes smaller. Then, the ESD robustness of PMOS transistors almost keeps the same value whether raising the width of channel or inserting inner pickups into source side. The above statement is discussed in Chapter 2. With a view to improve the ESD performance of PMOS-based ESD clamp devices. A novel ESD protection design is proposed in and is presented in chapter 3.
In chapter 3, a novel ESD protection design by using PMOS device with embedded silicon-controlled rectifier (SCR) is proposed in this work. This design employs the P-ESD implant which is put in the drain side of NMOS to lower the trigger voltage in a standard step of CMOS process. Hence, there is no need for extra mask/cost. Besides, the proposed device has the higher ESD robustness per area, more uniform turn-on behavior, and lower parasitic capacitance than GGNMOS and GDPMOS. Additionally, the proposed device has been tested to be free from latchup event. Accordingly, the proposed device can be a better solution for ESD protection in sub-50-nm CMOS process that cost becomes more expensive, the gate oxide thickness is getting to thinner, and the supply voltage is becoming lower. The above works in chapter 3 and chapter 4 have been designed, fabricated, and characterized in a 28-nm high-k/metal gate CMOS process.

摘要 i
Abstract iii
Acknowledgements v
Contents vi
List of Figure viii
List of Tables xi
Chapter1 Introduction 1
1.1 Introduction to Whole-Chip ESD Protection Design 1
1.1.1 Whole-Chip ESD Protection Design Scheme 1
1.1.2 Measurement Methods 2
1.2 Motivation 3
1.3 Thesis Organization 5
Chapter2 Investigation on Multi-finger ESD Protection MOS Transistors with Inner Pickups 6
2.1 Introduction 6
2.1.1 Turn-On Mechanism of MOS Transistors under ESD Event 6
2.1.2 Non-Uniform Turn-On Issue in MOS Transistors 8
2.2 Motivation 9
2.3 Multi-Finger GGNMOS with Inner Pickups 10
2.3.1 Device Structure and Chip Photo 10
2.3.2 Measurement Results 14
2.4 Multi-Finger GDPMOS with Inner Pickups 21
2.4.1 Device Structure and Chip Photo 21
2.4.2 Measurement Results 26
2.5 Summary 32
Chapter3 Improving ESD Robustness of PMOS Device with Embedded SCR in Advanced CMOS Process 33
3.1 Introduction and Motivation 33
3.2 The Proposed ESD Protection Design 35
3.1.2 Device Structure and Chip Photo 35
3.1.3 TLP Characteristics 37
3.1.4 Failure Analysis 37
3.1.5 Summary 38
3.2 Modified the Proposed ESD Protection Design in 28-nm High-K Metal Gate Process 38
3.2.1 Device Structure and Chip Photo 38
3.2.2 ESD Robustness and System-Level ESD test 40
3.2.3 TLP and VF-TLP I-V Characteristics 41
3.2.4 Parasitic Capacitance 44
3.2.5 Trigger Mechanism 44
3.2.6 Transient-Induced Latchup (TLU) Test 51
3.2.7 Failure Analysis 53
3.2.8 Summary 55
3.3 Modified the Proposed ESD Protection Design in 0.18-m Process 57
3.3.1 Device Structure and Chip Photo 57
3.3.2 ESD Robustness 58
3.3.3 TLP Characteristics 58
3.3.4 DC Characteristics 59
3.3.5 Transient-Induced Latchup (TLU) Test 60
3.4 Summary 62
Chapter4 63
Conclusions and Future works 63
4.1 Conclusions 63
4.2 Future works 64
Reference 67
Vita 70



[1] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, pp. 173–183, Jan. 1999.
[2] Standard Test Method for Electrostatic Discharge (ESD) Sensitivity Testing: Human Body Model (HBM)—Component Level, Standard ANSI/ESDA/JEDEC JS-001-2010, 2010.
[3] For Electrostatic Discharge Sensitivity Testing—Charged Device Model (CDM)—Component Level, 1999. ESD Association Standard Test Method ESD STM-5.3.1-1999.
[4] D. Linten, S. Thijs, M. Natarajan, P. Wambacq, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Donnay, and S. Decoutere, “A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1434-1442, Jul. 2005.
[5] F. Altolaguirre and M.-D. Ker, “Ultra-low-leakage power-rail ESD clamp circuit in a 65-nm CMOS technology,” in Proc. International Symposium on VLSI Design, Automation and Test, 2013, pp. 270-273.
[6] Y. Yang, R. Gauthier, K. Chatty, J. Li, R. Mishra, S. Mitra, and D. Ioannou, “Degradation of high-k metal gate nMOSFETs under ESD-likestress in a 32-nm technology,” IEEE Trans. Device and Materials Reliability, vol. 11, no. 1, pp. 118-125, Mar. 2011.
[7] T. Chang, Y. Hsu, T. Tsai, J. Tseng, J. L ee, and M. Song, “High-k metal gate-bounded silicon controlled rectifier for ESD protection,” in Proc. EOS/ESD Symposium, 2012.
[8] S. Dong, X. Du, Y. Han, M. Huo, Q. Cui, and D. Huang, “Analysis of 65 nm technology grounded-gate NMOS for on-chip ESD protection applications,” Electronics Letters, vol. 44, no. 19, pp. 1129-1130, Sep. 2008.
[9] M.-D. Ker, S.-H. Chen, and C.-H. Chuang, “ESD failure mechanisms of analog I/O cells in a 0.18-μm CMOS technology,” IEEE Trans. Device and Materials Reliability, vol. 6, no. 1, pp. 102-111, Mar. 2006.
[10] E. Worley, “New ballasting method for MOS output drivers and power bus clamps,” in Proc. IEEE International Reliability Physics Symp., 2005, 458-461.
[11] K. Oh, C. Duvvury, K. Banerjee, and R. Dutton, “Analysis of nonuniform ESD current distribution in deep submicron nMOS transistors,” IEEE Trans. Electron Devices, vol. 49, no. 12, pp. 2171- 2182, Dec. 2002.
[12] M.-D. Ker, Y.-R. Wen, W.-Y. Chen, and C.-Y. Lin, “Impact of layout pickups to ESD robustness of MOS transistors in sub 100-nm CMOS process,” in Proc. IEEE International Symposium on Next-Generation Electronics, 2010, pp. 100-103.
[13] M.-D. Ker and H.-C. Hsu, “The impact of inner pickup on ESD robustness of multi-finger NMOS in nanoscale CMOS technology,” in Proc. IEEE International Reliability Physics Symposium, 2006, pp. 631- 632.
[14] P. Tan, I. Manna, Y. Tan, K. Lo, and P. Li, “A study of high current characteristics of devices in a 0.13μm CMOS technology,” in Proc. EOS/ESD Symp., 2002, pp. 186-193.
[15] C.-T. Yeh, Y.-C. Liang, and M.-D. Ker, “PMOS-based power-rail ESD clamp circuit with adjustable holding voltage controlled by ESD detection circuit,” in Proc. EOS/ESD Symp., 2011.
[16] M.-D. Ker and K.-C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits, IEEE Trans. Device and Materials Reliability, vol. 5, no. 2, pp. 235-249, Jun. 2005.
[17] M. Mergens, C. Russ, K. Verhaege, J. Armer, P. Jozwiak, R. Mohn, B. Keppens, and C. Trinh, “Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies,” IEEE Trans. Device and Materials Reliability, vol. 5, no. 3, pp. 532-542, Sep. 2005.
[18] C.-Y. Lin, L.-W. Chu, and M.-D. Ker, “ESD protection design for 60-GHz LNA with inductor-triggered SCR in 65-nm CMOS process,” IEEE Trans. Microwave Theory and Techniques, vol. 60, no. 3, pp. 714-723, Mar. 2012.
[19] W. Lin, C. Lo, and J. Tseng, “Vertical BJT and SCR for ESD,” U.S. Patent 8 809 905, Aug. 19, 2014.
[20] H. Hwang and T. Tang, “Silicon controlled rectifier device for electrostatic discharge protection,” U.S. Patent 7 910 998, Mar. 22, 2011.
[21] C. Huang, C. Shih, H. O, and Y. Liu, “Fast and compact SCR ESD protection device for high-speed pins,” U.S. Patent 7 471 493, Dec. 30, 2008.
[22] G. Bosefli, V. Reddy, and C. Duvvury, “Latch-up in 65nm CMOS technology: a scaling perspective,” in Proc. IEEE International Reliability Physics Symp., 2005, 137-144.
[23] M.-D. Ker and K.-H. Lin, “ESD protection design for I/O cells with embedded SCR structure as power-rail ESD clamp device in nanoscale CMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no.11, pp. 2329-2338, Nov. 2005.
[24] J. Lee, J. Shih, C. Tang, K. Liu, Y. Wu, R. Shiue, T. Ong, Y. Peng, and J. Yue, “Novel ESD protection structure with embedded SCR LDMOS for smart power technology,” in Proc. IEEE International Reliability Physics Symp., 2002, pp. 156-161.
[25] M.-D. Ker, C.-H. Chuang, and W.-Y. Lo, “ESD implantations for on-chip ESD protection with layout consideration in 0.18-μm salicided CMOS technology,” IEEE Trans. Semiconductor Manufacturing, vol. 18, no. 2, pp. 328-337, May 2005.
[26] L. Tiemeijer and R. Havens, “A calibrated lumped-element de-embedding technique for on-wafer RF characterization of high-quality inductors and high-speed transistors,” IEEE Transactions on Electron Devices, vol. 50, no. 3, pp. 822-829, Mar. 2003.
[27] M.-D. Ker and S.-F. Hsu, “Component-level measurement for transient-induced latchup in CMOS ICs under system-level ESD considerations,” IEEE Trans. Device and Materials Reliability, vol. 6, no. 3, pp. 461-472, Sep. 2006.
[28] G. Weiss and D. Young, “Transient-induced latchup testing of CMOS integrated circuits,” in Proc. EOS/ESD Symp., 1995, pp. 194-198.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top