|
[1] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, pp. 173–183, Jan. 1999. [2] Standard Test Method for Electrostatic Discharge (ESD) Sensitivity Testing: Human Body Model (HBM)—Component Level, Standard ANSI/ESDA/JEDEC JS-001-2010, 2010. [3] For Electrostatic Discharge Sensitivity Testing—Charged Device Model (CDM)—Component Level, 1999. ESD Association Standard Test Method ESD STM-5.3.1-1999. [4] D. Linten, S. Thijs, M. Natarajan, P. Wambacq, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Donnay, and S. Decoutere, “A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1434-1442, Jul. 2005. [5] F. Altolaguirre and M.-D. Ker, “Ultra-low-leakage power-rail ESD clamp circuit in a 65-nm CMOS technology,” in Proc. International Symposium on VLSI Design, Automation and Test, 2013, pp. 270-273. [6] Y. Yang, R. Gauthier, K. Chatty, J. Li, R. Mishra, S. Mitra, and D. Ioannou, “Degradation of high-k metal gate nMOSFETs under ESD-likestress in a 32-nm technology,” IEEE Trans. Device and Materials Reliability, vol. 11, no. 1, pp. 118-125, Mar. 2011. [7] T. Chang, Y. Hsu, T. Tsai, J. Tseng, J. L ee, and M. Song, “High-k metal gate-bounded silicon controlled rectifier for ESD protection,” in Proc. EOS/ESD Symposium, 2012. [8] S. Dong, X. Du, Y. Han, M. Huo, Q. Cui, and D. Huang, “Analysis of 65 nm technology grounded-gate NMOS for on-chip ESD protection applications,” Electronics Letters, vol. 44, no. 19, pp. 1129-1130, Sep. 2008. [9] M.-D. Ker, S.-H. Chen, and C.-H. Chuang, “ESD failure mechanisms of analog I/O cells in a 0.18-μm CMOS technology,” IEEE Trans. Device and Materials Reliability, vol. 6, no. 1, pp. 102-111, Mar. 2006. [10] E. Worley, “New ballasting method for MOS output drivers and power bus clamps,” in Proc. IEEE International Reliability Physics Symp., 2005, 458-461. [11] K. Oh, C. Duvvury, K. Banerjee, and R. Dutton, “Analysis of nonuniform ESD current distribution in deep submicron nMOS transistors,” IEEE Trans. Electron Devices, vol. 49, no. 12, pp. 2171- 2182, Dec. 2002. [12] M.-D. Ker, Y.-R. Wen, W.-Y. Chen, and C.-Y. Lin, “Impact of layout pickups to ESD robustness of MOS transistors in sub 100-nm CMOS process,” in Proc. IEEE International Symposium on Next-Generation Electronics, 2010, pp. 100-103. [13] M.-D. Ker and H.-C. Hsu, “The impact of inner pickup on ESD robustness of multi-finger NMOS in nanoscale CMOS technology,” in Proc. IEEE International Reliability Physics Symposium, 2006, pp. 631- 632. [14] P. Tan, I. Manna, Y. Tan, K. Lo, and P. Li, “A study of high current characteristics of devices in a 0.13μm CMOS technology,” in Proc. EOS/ESD Symp., 2002, pp. 186-193. [15] C.-T. Yeh, Y.-C. Liang, and M.-D. Ker, “PMOS-based power-rail ESD clamp circuit with adjustable holding voltage controlled by ESD detection circuit,” in Proc. EOS/ESD Symp., 2011. [16] M.-D. Ker and K.-C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits, IEEE Trans. Device and Materials Reliability, vol. 5, no. 2, pp. 235-249, Jun. 2005. [17] M. Mergens, C. Russ, K. Verhaege, J. Armer, P. Jozwiak, R. Mohn, B. Keppens, and C. Trinh, “Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies,” IEEE Trans. Device and Materials Reliability, vol. 5, no. 3, pp. 532-542, Sep. 2005. [18] C.-Y. Lin, L.-W. Chu, and M.-D. Ker, “ESD protection design for 60-GHz LNA with inductor-triggered SCR in 65-nm CMOS process,” IEEE Trans. Microwave Theory and Techniques, vol. 60, no. 3, pp. 714-723, Mar. 2012. [19] W. Lin, C. Lo, and J. Tseng, “Vertical BJT and SCR for ESD,” U.S. Patent 8 809 905, Aug. 19, 2014. [20] H. Hwang and T. Tang, “Silicon controlled rectifier device for electrostatic discharge protection,” U.S. Patent 7 910 998, Mar. 22, 2011. [21] C. Huang, C. Shih, H. O, and Y. Liu, “Fast and compact SCR ESD protection device for high-speed pins,” U.S. Patent 7 471 493, Dec. 30, 2008. [22] G. Bosefli, V. Reddy, and C. Duvvury, “Latch-up in 65nm CMOS technology: a scaling perspective,” in Proc. IEEE International Reliability Physics Symp., 2005, 137-144. [23] M.-D. Ker and K.-H. Lin, “ESD protection design for I/O cells with embedded SCR structure as power-rail ESD clamp device in nanoscale CMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no.11, pp. 2329-2338, Nov. 2005. [24] J. Lee, J. Shih, C. Tang, K. Liu, Y. Wu, R. Shiue, T. Ong, Y. Peng, and J. Yue, “Novel ESD protection structure with embedded SCR LDMOS for smart power technology,” in Proc. IEEE International Reliability Physics Symp., 2002, pp. 156-161. [25] M.-D. Ker, C.-H. Chuang, and W.-Y. Lo, “ESD implantations for on-chip ESD protection with layout consideration in 0.18-μm salicided CMOS technology,” IEEE Trans. Semiconductor Manufacturing, vol. 18, no. 2, pp. 328-337, May 2005. [26] L. Tiemeijer and R. Havens, “A calibrated lumped-element de-embedding technique for on-wafer RF characterization of high-quality inductors and high-speed transistors,” IEEE Transactions on Electron Devices, vol. 50, no. 3, pp. 822-829, Mar. 2003. [27] M.-D. Ker and S.-F. Hsu, “Component-level measurement for transient-induced latchup in CMOS ICs under system-level ESD considerations,” IEEE Trans. Device and Materials Reliability, vol. 6, no. 3, pp. 461-472, Sep. 2006. [28] G. Weiss and D. Young, “Transient-induced latchup testing of CMOS integrated circuits,” in Proc. EOS/ESD Symp., 1995, pp. 194-198.
|