跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游育諺
研究生(外文):Yuh-Yan Yu
論文名稱:高靈敏度之壓阻式微懸臂梁生物感測器應用於蛋白質分子之即時檢測
論文名稱(外文):Use of Piezoresistive Microcantilever Biosensor to Real-Time Monitor Bio-molecules
指導教授:黃榮山
指導教授(外文):Long-Sun Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:壓阻式微懸臂梁感測器惠斯登電橋電路系統晶片
外文關鍵詞:Piezoresistivesurface micromachiningBiosensor
相關次數:
  • 被引用被引用:4
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以目前生醫檢測系統來說,其高成本、檢測時間長、佔空間與無法符合即時監測為主要的缺點。而隨著生物奈米技術的快速發展,生物感測工具的設計與發展必須趨向於微小化、高靈敏度、可攜帶式以及可無線傳輸功能等。
而市面上使用的微生化感測器大多利用化學方法或螢光標定進行檢測,且須架設光場,來進行檢測,本研究將以力學為基礎發展壓阻式微懸臂梁感測器(Piezoresistive micro-cantilever biosensor)進行生物檢測,以取代化學與螢光標定之檢測方法。但因光源不易聚焦於微懸臂梁上,檢測出來的訊號易產生極大誤差;本文擬以壓阻式微懸臂梁檢測方式取代傳統光學檢測。藉由壓阻式微懸臂梁建構在惠斯登電橋電路(Wheatstone bridge circuit)上作為轉換機制,先將生物與化學的反應過程轉換為奈米力學的變形運動,此變形經過壓阻效應可轉換成電壓訊號。當生物分子在壓阻式微懸臂梁生物晶片的表面結合時,會引入表面應力使其彎曲,約在數十個奈米左右,藉由電阻的改變而傳出訊號,經放大電路放大訊號。再經無線傳輸系統單晶片將訊號傳出到電腦分析,以達到遠端即時診斷的目的。
在本研究中已成功的利用微機電製程製作出壓阻式微臂梁生物感測器,經由無線傳輸的方式量測出自組裝分子(bio-linker)與抗體(Anti-CRP)的訊號。而以壓阻式微懸臂梁生物感測器之架構具有微小化、低成本、高功能性、高效率與可攜式的優點。未來將可繼續朝向系統晶片(System-on-chip)設計與無線感測的目標繼續往前邁進。
Bio-sensing tools have been moving towards miniaturization, high sensitivity, portability and wireless networking. While fluorescent labeling of nucleic acids is becoming a standard procedure, protein labeling techniques are not yet as well established. The purpose of this paper is to demonstrate a novel reusable biosensor which achieves the continuous label-free recognition of biological substances in real-time, which based on the nanomechanics of a piezoresistive microcantilever.
Over the past few years, an increasingly evident number of studies have been conducted on using the microcantilevers as transducers in biochemical-sensing systems. In principle, adsorption of biochemical species on a functionalized surface of a micro-cantilever will cause bio-induced surface stress and accordingly the cantilever bends. We used this technique in the immunoassay.
A microcantilever based biosensor with piezoresistive has been developed using surface micromachining technique in this paper, which is cost effective, miniaturized and high applicability. This provides a novel method to detect bio-molecules which is due to molecule binding induced cantilever deflection. We have demonstration of wireless real-time label-free detection of bio-linker and anti-CRP antibody, the signal was successfully detected by using piezoresistive cantilever biosensor. The tendency of cantilever deflection is agreement with optical-based cantilever detection. In the future, the piezoresistive cantilever biosensor will offer a powerful plateform for high-throughput bioassays in proteomics and immunology.
謝誌 i
中文摘要 iii
Abstract iv
目錄 v
圖表目錄 viii
表格目錄 xi
符號目錄 xii
第一章 緒論 1
1-1前言 1
1-2研究動機及目的 3
1-3文獻回顧 6
1-3-1微懸臂梁感測器於生物分子辨識分析之發展背景 6
1-3-2壓阻式微懸臂梁之發展背景 9
1-4研究方法 12
1-5論文架構 13
第二章 生物感測器 15
2-1生物感測器之基本工作原理 15
2-1-1生物感測器之分類 16
2-1-2生物分子之辨識 19
2-1-3抗原與抗體之特異性鍵結 22
2-1-4生物分子間之親和力作用 23
2-2微懸臂梁生物感測器之轉能機制 24
2-2-1共振式微型懸臂梁感測器 25
2-2-2溫度效應式微型懸臂梁感測器 27
2-2-3表面應力變化式微型懸臂梁感測器 29
2-3懸臂梁生物感測器之彎曲機制 30
第三章 壓阻式微懸臂梁生物感測器 33
3-1壓阻式微懸臂梁生物感測器之工作原理 33
3-2壓阻特性 34
3-3壓阻式懸臂梁之表面應力靈敏度 37
3-4惠斯登電橋電路之設計原理 39
第四章 壓阻式微懸臂梁生物感測器之設計與製作 42
4-1微懸臂梁生物感測器之壓阻設計 43
4-2微懸臂梁生物感測器之系統規格設計 47
4-3微懸臂梁生物感測器之製作 50
4-3-1材料之選用 51
4-3-2離子佈植法 53
4-3-3壓阻式微懸臂梁生物感測器之製作程序 54
4-3-4微流道之製作程序 60
4-3-5生物感測器與微流道之組合 62
4-4實驗系統設備架設 64
4-5無線傳輸生醫單晶片系統 65
4-6 C反應蛋白簡介 67
第五章 實驗結果與討論 70
5-1利用絕緣膠當作絕緣層之方法 70
5-2利用聚亞醯膜當作絕緣層之方法 73
5-3利用PECVD沉積Si3N4當作絕緣層 76
5-4免疫反應實驗量測結果 78
5-4-1免疫反應實驗流程 78
5-4-2免疫反應實驗量測結果 80
第六章 結論與未來展望 83
6-1結論 83
6-2未來展望 85
參考文獻 86
1.http://www.sciam.com.tw/read/readshow.
2.N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos,
“Cantilever Transducers as a Platform for Chemical and
Biological Sensors”, Review of scientific instruments,
Vol. 75, No. 7, pp. 2229-2253, 2004.
3.J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra,
“Atomic Force Microscopy Probe with Piezoresistive Read-
out and a Highly Symmetrical Wheatstone Bridge
Arrangement”, Sensors and Actuators A, Vol. 83, pp.47-
53, 2000.
4.R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K.
Gimzewski, E. Meyer, and H. J. Güntherodt, “Surface
Stress in the Self-assembly of Alkanethiols on Gold”,
Science, Vol. 276, pp. 2021-2024, 1997.
5.J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P.
Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J.
K. Gimzewski, “Translating Biomolecular Recognition
into Nanomechanics”, Science, Vol. 288, pp. 316-318,
2000.
6.G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote,
M. F. Hagan, A. K. Chakraborty, and A. Majumdar,
“Origin of Nanomechanical Cantilever Motion Generated
from Biomolecular Interactions”, Proceedings of the
National Academy of Sciences of the United States of
America, Vol. 98, No.4, pp. 1560-1564, 2001.
7.K. M. Hansen, H. F. Ji, G. Wu, R. Datar, R. Cote, A.
Majumdar, and T. Thundat, “Cantilever-based Optical
Deflection Assay for Discrimination of DNA Single-
nucleotide Mismatches”, Analytical Chemistry, Vol. 73,
pp. 1567-1571, 2001.
8.G. Wu, R. H. Dater, K. M. Hansen, T. Thundat, R. J.
Cote, and A. Majumdar, “Bioassay of Prostate-specific
Antigen (PSA) Using Microcantilevers”, Nature
Biotechnology , Vol. 19, pp. 856-860, 2001.
9.Y. Arntz, J. D. Seelig, H. P. Lang, J. Zhang, P.
Hunziker, J. P. Ramseyer, E. Meyer, M. Hegner, and Ch.
Gerber, “Label-free Protein Assay Based on a
Nanomechanical Cantilever Array”, Nanotechnology,
Vol.14, pp. 86-90, 2003.
10.J. Pei, F. Tian, and T. Thundat, “Glucose Biosensor
Based on the Microcantilever”, Analytical Chemistry,
Vol. 76, pp. 292-297, 2004.
11.R. Mckendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner,
H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H. J. Gü
ntherodt, and C. Gerber, “Multiple Label-free
Biodetection and Quantitative DNA-binding Assays on a
Nanomechanical Cantilever Array”, Proceedings of the
National Academy of Sciences of the United States of
America, Vol. 99, No. 15, pp. 9783-9788, 2002.
12.F. Liu, Y. Zhang, and Z. C. Ou-Yang, “Flexoelectric
Origin of Nanomechanic Deflection in DNA-microcantilever
System”, Biosensors and Bioelectronics, Vol. 18, pp.
655-660, 2003.
13.G. Binning, C. F. Quate, and Ch. Gerber, “Atomic Force
Microscope”, Physical review letters, Vol. 56, No.9,
pp. 930-933, 1986.
14.H. J. Mamin and D. Rugar, “Thermomechanical Writing
With an Atomic Force Microscope Tip”, Applied Physics
letters, Vol. 61, No.8, pp. 1003-1005, 1992.
15.M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic
Resolution With an Atomic Force Microscope Using
Piezoresistive Detection”, Applied Physics letters,
Vol. 62, No.8, pp. 834-836, 1993.
16.P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen,
and A. Boisen, “ Optimised Cantilever Biosensor With
Piezoresistive Read-out”, Ultramicroscopy, Vol. 97, pp.
371-376, 2003.
17.K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon,
J. H. Park, and T. S. Kim, “Novel Electrical Detection
of Label-free Disease Marker Proteins Using
Piezoresistive Self-sensing Micro-cantilevers”,
Biosensors and Bioelectronics, Vol. 20, pp. 1932-1938,
2005.
18.G. Shekhawat, S. H. Tark, and V. P. Dravid, “MOSFET-
Embedded Microcantilevers for Measuring Deflection in
Biomolecular Sensors”, Science, Vol. 311, pp. 1592-
1595. 2006.
19.L. D. Mello and L. T. Kubota, “Review of the Use of
Biosensors as Analytical Tools in the Food and Drink
Industries”, Food Chemistry, Vol. 77, pp. 237-256, 2002.
20.F. Scheller and F. Schubert, Biosensor, Elsevier
Science Publishing Inc., New York, USA, 1992.
21.Roitt, Essential Immunology, Blackwell Science Ltd.,
London, UK, pp. 43 ~ 103, 1997.
22.http://www.chemedu.ch.ntu.edu.tw/lecture/molecular/2.htm
23.顏毅廣,”全反射螢光顯微技術應用於蛋白質分子之即時偵測與
操控”,國立台灣大學應用力學研究所碩士論文,民國93年。
24.Christiane Ziegler, “Cantilever-based Biosensors”,
Analytical and Bioanalytical Chemistry, Vol. 379, pp.
946-959, 2004.
25.J. R. Barnes, R. J. Stephenson, C. N. Woodburn, S. J.
O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and
Ch. Geber, “A Femtojoule Calorimeter Using
Micromechanical Sensors”, Review of Sceientific
Instruments, Vol.65, No. 12, pp.3793–3798, 1994.
26.G. G. Stoney, “The Tension of Metallic Films Deposited
by Electrolysis”, Proceedings of the Royal Society of
London. A. Containing Papers of a Mathematical and
Physical Character, Vol. 82, No. 553, pp. 172-175, 1909.
27.行政院國家科學委員會精密儀器發展中心出版,”微機電系統技
術與應用”,民國92年.
28.J. Thaysen, R. Marie, and A. Boisen, “Cantilever-based
Bio-chemical Sensor Integrated in a Microliquid Handling
System”, IEEE MEMS, pp. 401-404, 2001.
29.J. A. Harley and T. W. Kenny, “1/F Noise
Considerations for the Design and Process Optimization
of Piezoresistive Cantilevers”, Journal of
Microelectromechanical Systems, Vol. 9, No. 2, pp. 226-
235, 2000
30.T. H. Wang, Y. Peng, C. Zhang, P. K. Wong, and C. M.
Ho, “Single-Molecule Tracing on a Fluidic Microchip
for Quantitative Detection of Low-Abundance Nucleic
Acids”, Journal of the American Chemical Society, Vol.
127, No. 15, pp. 5354-5359, 2005.
31.黃榮章,”奈米力學建構之感測器應用於生物分子辨識之研
究”, 國立台灣大學應用力學研究所博士論文,民國95年。
32.郭雅音,”臨床血清免疫學”, 藝軒圖書出版社,民國85年。
33.M. A. M. Ramadan, A. K. Shrive, D. Holden, A. A. Myles,
J. E. Volanakis, L. J. DeLucas, and T. J. Greenhough,
“The Three-dimensional Structure of Calcium-depleted
Human C-reactive Protein From Perfectly Twinned
Crystals”, Acta Crystallographica Section D, Vol. 58,
pp. 992-1001, 2002.
34.P. M. Ridker, R. J. Glynn, and C. H. Hennekens, “C-
Reactive Protein Adds to the Predictive Value of Total
and HDL Cholesterol in Determining Risk of First
Myocardial Infarction”, Circulation, Vol. 97, No.20,
pp. 2007-2011, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top