|
[1]王盈錦、林峰輝、胡孝光、黃琳惠、黃義侑、蔡瑞瑩、闕山 璋,生物醫學材料,國立編譯館,2002。 [2]http://www.stcsm.gov.cn/learning/lesson/course/detail.asp?id=92&lessonnum=3&coursenum=31, May 25,2009 [3]http://www.matweb.com/search/DataSheet.aspx?bassnum=MTiNi0&ckck=1, May 25,2009 [4]陳莉, 智能高分子材料, 化學工業出版社和材料科學與工程出版中心, 北京, 2005. [5]J.D. Chioid, E.H. Billett and D.J. Harrison, ‘Preliminary Investigations of Active Disassembly using Shape Memory Polymers,” Proceedings of the EcoDesign1999 1st International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, pp.590-596, 1999 [6]J.D. Chioid, E.H. Billett and D.J. Harrison, “Active Disassembly using Shape Memory Polymers for the Mobile Phone Industry,” Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment, ISEE-1999, Danvers, MA., 1999. [7]詹茂盛, 方義與王瑛, “形狀記憶功能高分子材料的研究現狀,” 合成橡膠工業, 23, 1, pp.53-57, 2000 [8]L. C. Chang, and T. A. Read, “Plastic Deformation and Diffusionless Phase Changes in Metals-the Gold-Cadmium Beta Phase,” Transaction of American Invitational Mathematics Examination, Vol. 191, pp. 47-52, 1951. [9]T. Tadaki, K. Otsuka, and K. Shimizu, “Shape memory alloys, ” Annual Review Material Science, Vol. 18, pp. 25-45, 1988. [10]H. Kessler, and W. Pitsch, “On the nature of the martensite to austenite reverse transformation,” Academisch Centrum Tandheelkunde Amsterdam Met., Vol. 15, pp. 401-405, 1967. [11]T. Saburi, S. Nenno, and C. M. Wayman, “Shape Memory Mechanisms in Alloys,” ICOMAT 1979 (MIT Press, Boston), pp. 619, 1979. [12]M. Nishida, and T. Honma, “All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging,” Scripta Metallurgica, Vol. 18, pp. 1293-1298, 1984. [13]M. Nishida, and T. Honma, “Effect of heat treatment on the all-round shape memory effect in Ti-5lat%Ni,” Scripta Metallurgica, Vol. 18, pp. 1299-1302, 1984. [14]M. Nishida, and C. M. Wayman, “Electron microscopy studies of the all-around shape memory effect in a Ti-51.0 at.% Nialloy,” Scripta Metallurgica, Vol.18, pp.1389-1394, 1984. [15]M. Nishida, and T. Honma, “Shape memory alloys,” ICOMAT-82, Vol. 43, C4-225-230, 1982. [16]T. Honma, “Two-Way Shape Memory Effect of NiTi Alloy Induced by Constraint Aging Treatment at Room Temperature,” ICOMAT-86, pp. 709-715, 1986. [17]K. Otsuka, and K. Shimizu, “Shape Memory Alloys Pseudoelsticity”, Metals Forum, Vol. 4, No.3, pp.142-152, 1981. [18]K. Otsuka, and C.M. Wayman, “Pseudoelasticity and stress induced martensitic transformations,” Reviews on the Deformation Behavior of Materials, (P. Feltham ed.), Israel, Vol.2, pp.81-172, 1977. [19]C. Liang, C.A. Rogers, and E. Malafeew, “Investigation of Shape Memory Polymers and Their Hybrid Composites,” Journal of Intelligent Material Systems and Structures, 8 (1997) 380-386. [20]H. Tobushi, T. Hashimoto, and N. Ito, “Shape Fixty and Shape Recovery in a Film of Shape Memory Polymer of Polyurethane Series,” Journal of Intelligent Material Systems and Structures, 9 (1998) 127-136. [21]H. Tobushi, S. Hayashi, K. Hoshio, Y. Makino, and N. Miwa, “Bending Actuation Characteristics of Shape Memory Composite with SMA and SMP,” Journal of Intelligent Material Systems and Structures, 17 (2006) 1075-1081 [22]B. Winzek, T. Sterzl, H. Rumpf, and E. Quandt, “Smart Motion Control by Phase-coupled Shape Memory Composites,” Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Oct. 2002, 2004-2009. [23]張萬喜,高分子形狀記憶材料的研究進展,材料導報,pp.45~50,1993. [24]C. Liang and C. A. Rogers, “One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials,” Journal of Intelligent Material Systems and Structures, Vol. 1, pp 207-234, 1990. [25]L. C. Brinson, “One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable,” Journal of Intelligent Material Systems and Structures, Vol. 4, pp. 229-242, 1993. [26]C.Y. Lee, C.S. Lin and H.C. Zhao, “Dynamic Characteristics of Platform with SMA Helical Spring Suspension,” Proceedings of the Thirteenth International Congress on Sound and Vibration (ICSV13), pp. 2-6 July 2006. [27]B. Erbstoeszer, B. Armstrong, M. Taya, and K. Inoue, “Stabilization of the shape memory effect in NiTi : an experimental investigation,” Scripta Materialia, Vol. 42, No. 12, pp. 1145-1150, 2000. [28]P. Malécot, C. Lexcellent, E. Foltête, M. Collet, “Shape Memory Alloys Cyclic Behavior-Experimental Study and Modeling,” Journal of Engineering Materials and Technology, Vol. 128, pp. 335-345, July 2006. [29]R. Lammering and I. Schmidt, “Experimental investigations on the damping capacity of NiTi components,” Smart Materials and Structures, vol. 10, pp. 853-859, August 2001. [30]W.H. Wong, P.C. Tse, K.J. Lau, Y.F. Ng, “Spring Constant of Fibre-reinforced Plastics Circular Springs Embedded with Nickel-Titanium Alloy Wire,” Composite Structures 65 (2004) 319-328. [31]K. Williams, G. Chiu, R. Bernhard, “Adaptive-Passive Absorbers Using Shape-Memory Alloys,” Journal of Sound and Vibration 249 (2002) 835-848. [32]C. Liang, C.A. Rogers, “Design of Shape Memory Alloy Springs with Applications in Vibration Control,” Journal of Vibration and Acoustics 115 (1993) 129-135. [33]C.Y. Lee, H.C. Zhuo, and C.W. Hsu, “Lateral vibration of a composite stepped beam consisted of SMA helical spring based on equivalent Euler–Bernoulli beam theory,” Journal of Sound and Vibration, (2009), doi:10.1016/j.jsv.2009.01.055. [34]D. Nashif, D. I. G. Jones, J. P. Henderson, Vibration Damping, John Wiley & Sons, pp. 130-132, 1985. [35]W. T. Thomson, Theory of Vibration with Applications, 2nd edition, Prentice Hall, pp. 22-23, 1981. [36]W. T. Thomson, Theory of Vibration with Applications, 2nd edition, Prentice Hall, pp. 278-279, 1981. [37]D. Nashif, D. I. G. Jones, J. P. Henderson, Vibration Damping, John Wiley & Sons, pp. 89-90, 1985.
|