跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林廷融
研究生(外文):Lin, Ting-Jung
論文名稱:以福衛三號及GRACE低軌衛星GPS資料推算時變地球重力場
論文名稱(外文):Temporal Gravity Changes from FORMOSAT-3 and GRACE GPS Tracking Data
指導教授:黃金維黃金維引用關係
指導教授(外文):Hwang, Chein-Way
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:127
中文關鍵詞:高-低衛星追蹤資料時變重力軌道擾動解析法殘餘加速度法低階帶諧係數
外文關鍵詞:high-low satellite-to-satellite trackingTemporal Gravity Changesanalytical orbital perturbation approachresidual acceleration approachzonal geopotential coefficients
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:1
本論文內容是結合福衛三號及GRACE衛星高-低衛星追蹤資料反衍時變地球重力場。為了估算時變重力地位係數,吾人已成功發展兩種重力反衍方法:軌道擾動解析法及殘餘加速度法,此兩種方法分別應用殘餘軌道擾動量(動態軌道及動力軌道之差值)及殘餘加速度(觀測加速度及參考加速度之差值)兩種不同觀測量,分別建立與時變重力地位係數之線性關係後進行估算時變重力地位係數。
吾人首先使用 Bernese 5.0軟體計算福衛三號及GRACE衛星公分級動態軌道。此後,以標準力模式進行計算作用於福衛三號及GRACE衛星上之各種擾動力,此部分使用之主要計算軟體為NASA Goddard研發之 GEODYN II軟體。福衛三號表面擾動力如大氣阻力、輻射壓及其他微小表面擾動力須以力模式進行求解,並於每飛行一圈即解算一組適當表面力參數。所解算之原始5秒一筆之六顆福衛三號衛星及10秒一筆之兩顆GRACE衛星動態及動力軌道重新取樣為一分鐘一筆之軌道位置資料,及後以數值微分得到加速度資料分別以為重力場反衍之用。
吾人以2006年8月一個月福衛三號及GRACE動態及動力軌道資料求解時變重力地位係數,分別使用軌道擾動解析法及殘餘加速度法處理福衛三號單一解及合併GRACE成果解,福衛三號及GRACE平均動態及動力軌道差異量分別約為7.5公分及6.5公分。福衛三號單一解可解出某些已知的時變重力訊號,但仍含有雜訊,合併解則可看出某些程度提升了GRACE單一解某些區域時變重力訊號。
此外,吾人處理自2006年9月至2007年12月共16個月的福衛三號及GRACE精密定軌資料進行每月低階時變重力係數求解至5階,使用軌道擾動解析法及殘餘加速度法所得到之大地起伏變化將與CSR RL04解進行比較分析,15階之合併GRACE解也將進行求解。吾人使用軌道擾動解析法及殘餘加速度法所得到之低階帶諧係數之變化與SLR及CSR RL04解同期觀測比較,發現四者變化趨勢極為相似。


This dissertation is aimed at temporal gravity field recovery from the analyses of the high-low satellite-to-satellite tracking (hl-SST) data from the COSMIC and GRACE satellite missions. In order to estimate the time-varying geopotential coefficients, two efficient methodologies, the analytical orbital perturbation (AOP) approach and the residual acceleration (ACC) approach, are developed in the research. With the reference orbits removed, orbital perturbations (difference between kinematic and reference orbits) and residual accelerations (difference between observed and reference accelerations) from the residual orbits are linear functions of the time-varying geopotential coefficients. Such linear functions enable convenient establishments of observation equations to estimate geopotential coefficients.
The Bernese 5.0 software is used to compute the cm-level kinematic orbits of COSMIC and GRACE. The NASA Goddard’s GEODYN II software is used to compute the perturbing forces acting on COSMIC and GRACE satellites based on the standard models of orbit dynamics. The accelerations due to the atmospheric drag, solar radiation pressure and other minor surface forces are estimated by some relevant model parameters over one orbital period from COSMIC’s kinematic and reduced dynamic orbits. The 5s kinematic and dynamic orbits from six COSMIC and the 10s orbits from two GRACE satellites are re-sampled into 1 minute normal point positional data and then converted to acceleration data by numerical differential for gravity recovery.
To validate the theories and computer programs associated with the AOP and ACC approaches, some experimental solutions of time-varying geopotential coefficients are carried out using one-month (August 2006) of COSMIC and GRACE kinematic and dynamic orbits. The average RMS in RTN directions of reduced COSMIC and GRACE (1 minute) between kinematic orbits and dynamic orbits are about 7.5 and 6.5 cm. The COSMIC solutions reveal several well-known temporal gravity signatures, but contain artifacts. The combined COSMIC-GRACE solutions enhance some local features in the GRACE solutions.
The monthly COSMIC and GRACE precise orbit data from September 2006 to December 2007 (16 months) are processed to recover monthly low-degree (up to degree 5) geopotential coefficients by the AOP and ACC approaches. The geoid variations from such low-degree geopotential coefficients are compared with the CSR RL04 solutions. Two combined solutions by the AOP and ACC approaches (up to degree 15) are also carried out. The monthly variations of the zonal geopotential coefficients, the AOP and ACC solutions (degree 5) closely resemble the SLR-derived and CSR RL04 solutions.

Table of Contents
Abstract (in Chinese) i
Abstract iii
Table of Contents v
List of Tables vii
Lists of Figures viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Objectives 7
1.3 Outlines of Thesis 8
Chapter 2 Methods for gravity field modeling using GPS observations 10
2.1 Introduction 10
2.2 Theory of analytical orbital perturbation approach 11
2.3 Theory of residual acceleration approach 20
Chapter 3 Force modeling and precise orbit determination for COSMIC 23
3.1 Introduction 23
3.2 Orbit dynamics of COSMIC satellite 23
3.2.1 Equations of motion and perturbing potential force 24
3.2.2 Atmospheric drag and solar radiation effects on COSMIC satellites 26
3.3 Kinematic orbit determination using Bernese 5.0 30
3.4 Dynamic orbit determination using GEODYN II software 32
3.5 Normal point reduction 38
Chapter 4 Recovery of temporal gravity field using analytical orbital perturbation approach 42
4.1 Introduction 42
4.2 Kinematic orbits of COSMIC and accuracy assessment 42
4.3 Reference dynamic orbits for COSMIC and GRACE 46
4.4 Formulae used in gravity recovery 48
4.5 Results of gravity recovery 51
Chapter 5 Temporal gravity recovery based on satellite accelerations 62
5.1 Introduction 62
5.2 Processing of COSMIC and GRACE residual accelerations 62
5.2.1 Position data screening 62
5.2.2 Computation of residual accelerations 66
5.3 Validation of the acceleration method 69
5.4 Gravity recovery using COSMIC and GRACE GPS data 78
Chapter 6 Low-degree gravity change 88
6.1 Introduction 88
6.2 Data of COSMIC and GRACE 88
6.3 Time series of monthly gravity solutions 93
6.4 Low-degree zonal coefficients 107
Chapter 7 Summary, Conclusions, and Recommendations 112
7.1 Summary and conclusions 112
7.2 Recommendations for future work 113
Reference 115
Appendix A: Acronyms 123
Curriculum Vitae 125

Balmino G, Barriot JB (1989) Numerical integration techniques revised, Manuscripta geodaetica, 15, 1-10.
Balmino G, Schrama E, Sneeuw N (1994) Compatibility of first-order circular orbit perturbations theories; consequences for cross-track inclination functions, J Geod, 70, 554-561.
Bertiger W, Bar-Sever Y, Christensen E, Davis E, Guinn J, Haines B, Ibanez-Meier R, Lee J, Lichten S, Melbourne W, Muellerschoen R, Munson T, Vigue Y, Wu S,Yunck T, Schutz B, Abusali P, Rim H, Watkins M, Willis P (1994) GPS precise tracking of TOPEX/Poseidon: Results and implications, J Geophys Res, 99(C12), 24449-24464.
Bettadpur S (2007) UTCSR level-2 processing standards document for Level-2 product release 0004, Center for Space Research, Univ of Texas, Austin, USA.
Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The international GPS service (IGS): an interdisciplinary service in support of Earth sciences. Adv Space Res, 23, 631–635.
Bock H (2003) Efficient methods for determining precise orbits of low Earth orbiter using the global positioning system, Ph. D dissertation, Astronomical Institute, Univ of Berne, Berne, Switzerland.
Byun S, Schutz BE (2001) Improving satellite orbit solution using double-differenced GPS carrier phase in kinematic mode, J Geod, 75, 533-543.
Case K, Kruizinga GLH, Wu SC (2004) GRACE level 1B data product user handbook, JPLD-22027, http://podaac.jpl.nasa.gov/grace/documentation.html.
Chang LH (2003) Force modeling for ROCSAT-3 satellite orbits, master thesis, Dept. of Civil Engineering, National Chao Tung Univ , Hsinchu, Taiwan, ROC.
Chao BF, Pavlis E, Hwang C, Liu CC, Shum CK, Tseng CL, Yang M (2000) COSMIC: geodetic applications in improving Earth's gravity model, Terr Atm Ocean Sci (TAO), 11, 365-378.
Cheng M, Tapley B (1999) Seasonal variations in low-degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observations, J Geophys Res, 104, 2667-2681.
Cheng M, Tapley BD (2004) Variations in the Earth's oblateness during the past 28 years, J Geophys Res, 109, B09402.
Cheng M, Tapley BD (2008) Recent variations in J2 from SLR and GRACE, GRACE science team meeting, San Francisco, CA, USA.
Colombo O (1984) Altimetry, orbits and tides, NASA TM 86180, Greenbelt, Maryland, USA.
Cox C, Chao BF (2002) Detection of a large-scale mass redistribution in the terrestrial system since 1998, Science, 297 (5582), 831-833.
Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software - Version 5.0. Astronomical Institute, Univ of Bern, Switzerland.
Ditmar P, Kuznetsov V, van der Sluijs AAV, Schrama E, Klees R (2006) DEOS_CHAMP-01C_70: a model of the Earth's gravity field computed from accelerations of the CHAMP satellite. J Geod, 79, 586-601.
Dunn C, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Thomas JB, Tien J, Romans L, Watkins M, Wu SC, Bettadpur S, Kim JR (2003) Instrument of GRACE: GPS augments gravity measurements, GPS World, 14, 16–28.
Engelis T (1987) Radial orbit error reduction and sea surface topography determination using satellite altimetry, Dept. of Geodetic Science and Surveying, Rep. No. 377, Ohio State Univ, Columbus, Ohio, USA.
European Space Agency (1999) Gravity field and steady-state ocean circulation missions, Reports for mission selection, the four candidate Earth explorer core missions, SP-1233(1), European Space Agency, Noordwijk, Netherland.
Förste C, Flechtner F, Schmidt R, König R, Meyer U, Stubenvoll R, Rothacher M, Barthelmes F, Neumayer H, Biancale R, Bruinsma S, Lemoine J, Loyer S (2006) A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data – EIGEN-GL04C. Poster presented at EGU, General Assembly 2006, Vienna, Austria.
Gerald C, Wheatley P (2003) Applied numerical analysis 7th ed., Addison Wesley Longman Inc.
GFZ homepage. http://www-app2.gfz-potsdam.de/pb1/op/grace/index_GRACE.html.
GSFC (1989) Mathematical Theory of the Goddard Trajectory Determination System, Goddard Space Flight Center, Greenbelt, Maryland, USA.
Hedin A (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere, J Geophys Res, 96, 4649-4662.
Heiskanen W A, Moritz H (1985) Physical Geodesy, reprint, Inst. of Physical Geodesy, TU Graz, Austria.
Hwang C (1995) Orthonormal function approach for Geosat determination of sea surface topography, Mar Geod, 18, 245-271.
Hwang C, Lin MJ (1998) Fast integration of low orbiter's trajectory perturbed by Earth's nonsphericity, J Geod, 72, 578-585.
Hwang C (2001) Gravity recovery using COSMIC GPS data: application of orbital perturbation theory, J Geod, 75, 117-136.
Hwang C, Hwang LS (2002) Satellite orbit error due to geopotential model error using perturbation theory: applications to ROCSAT-2 and COSMIC mission, Comput Geosci, 28, 357-367.
Hwang C, Lin TJ, Tseng TP, Chao BF (2008) Modeling orbit dynamics of FORMOSAT-3/COSMIC satellites for recovery of temporal gravity, IEEE Transactions on Geoscience and Remote Sensing (TGRS), 46(11), 3412-3423.
Hwang C, Tseng TP, Lin TJ, Švehla D, Schreiner B (2009) Precise orbit determination for FORMOSAT-3/COSMIC, J Geod, 83, 477-489.
Hwang LS (2002) Precision orbit determination and gravity models from tracking data of Low-Earth-Orbiting (LEO) satellites, Ph. D dissertation, Dept of Civil Engineering, National Chao Tung Univ, Hsinchu, ROC.
Ivins R, Sammis C, Yoder C (1993) Deep mantle viscous structure with prior estimate and satellite constraint, J Geophys Res, 98, 4579-4609.
Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geod, 80, 47-60.
Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using un-differenced and doubly differenced GPS data, Adv Space Res, 39, 1612-1619.
Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celes Mech Dynam Astron, 75, 85–101.
Jekeli C, Garcia R (1997) GPS phase accelerations for moving-base gravimetry. J Geod, 71, 630-639.
Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R (2006) Precise orbit determination for the GRACE mission using only GPS data, J Geod, 80, 322–331.
Kang Z, Nagel P, Pastor R (2003) Precise orbit determination for GRACE, Adv Space Res, 31, 1875–1881.
Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Co, Walthamn, Massachusetts, USA.
Koch K (1987) Parameter estimation and hypothesis testing in linear model, Springer, Berlin, Germany.
Long A, Cappellari Jr. J, Velez C, Fuchs A (1989) Goddard trajectory determination system, Mathematical Theory, Revision 1, Flight Dynamics Division, National Aeronautics and Space Administration, USA.
Luthcke S, Rowlands D, Lemoine FG, Klosko SM, Chinn D, McCarthy JJ (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone, Geophys Res Lett, 33, L02402.
McCarthy D (1996) IERS Standards, IERS Technical Note 21, http://www.iers.org/MainDisp.csi?pid=47-25786.
Meskó A (1984). Digital filtering: Applications in geophysical exploration for oil. Pitman Pub. Ltd., London, UK.
Montenbruck O, Gill E (2001) Satellite orbit - models, methods, and application, Springer, Berlin, Germany.
Montenbruck O, Garcia-Fernandez M, Williams J (2006) Performance comparison of semicodeless GPS receivers for LEO satellites, GPS Solut, 10, 249–261.
Nerem RS, Klosko SM (1995) Secular variations of zonal harmonics and polar motion as geophysical constraints. In Rapp RH, Cazenave AA, Nerem RS (eds) Global Gravity and Its Temporal Variations. IAG Symp 116, Boulder.
Pavlis D et al. (1996) GEODYN operational manual, 5 volumes, Hughes/STX Corp., Greenbelt, Maryland, USA.
Ray R D (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, Goddard Space Flight Center, Greenbelt, Maryland, USA.
Reigber C, Bock R, Forste C, Grunwaldt L, Jakowski N, Luhr H, Schwintzer P, Tilgner C (1996) CHAMP phase B executive summary. GeoForschungs -Zentrum (GFZ), Potsdam, Germany.
Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K, Schwintzer P, Zhu SY (2005) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S, J Geodyn, 39, 1-10.
Reubelt T, Austen G, Grafarend EW (2004) Harmonic analysis of the Earth's gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite, Case study: CHAMP. J Geod, 77, 257-278.
Ries J, Cheng M, Bettadpur S, Chambers D (2008) Low-degree geopotential harmonics from SLR and GRACE. GRACE science team meeting, San Francisco, CA, USA.
Rim H (1992) TOPEX Orbit Determination using GPS tracking system. Ph. D dissertation, Dept of Aerospace Engineering and Engineering Mechanics, The Univ of Texas at Austin, USA.
Schreiner B (2005) COSMIC GPS POD and limb antenna test report. Internal report of UCAR, USA.
Schmidt R, Flechtner F, König R, Meyer Ul., Neumayer K-H., Reigber C, Rothacher M, Petrovic S, Zhu SY, Güntner A (2007) GRACE time-variable gravity accuracy assessment, IAG Symp, 130, 230-243.
Schutz L, Tapley B, Abusali P, Rim H (1994) Dynamic orbit determination using GPS measurements from TOPEX/Poseidon, Geophys Res Lett, 21(19), 2179-2182.
Seeber G (2003) Satellite Geodesy, 2nd Ed., Walter de Gruyter, Berlin, Germany.
Sinclair A (1997) Data Screening and Normal Point Formation: A Restatement of the Herstmonceaux Normal Point Recommendation, http://cddisa.gsfc.nasa.gov/cstg/ npt_algo.html.
Švehla D, Rothacher M (2003) Kinematic and reduced–dynamic precise orbit determination of low Earth orbiters, Adv in Geos, 1(1), 47-56.
Švehla D, Rothacher M (2004) CHAMP and GRACE in Tandem: POD with GPS and K-Band Measurements. Joint CHAMP/GRACE Science Meeting, 6–8 July 2004, GeoForschungsCentrum Potsdam (GFZ), Germany.
Tapley B (1997) The gravity recovery and climate experiment (GRACE). EOS, Trans. AGU 78, 46, Suppl-163.
Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE measurements of mass variability in the Earth system, Science, 305, 503-505.
Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang FG (2005) GGM02 - An improved Earth gravity field model from GRACE, J Geod, 79, 467-478.
Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 Mean Earth Gravity Model from GRACE, Proc of AGU fall meeting 2007.
Torge W (1989) Gravimetry, Walter de Gruyter & Co., Berlin, Germany.
Visser PNAM (2005) Low-low satellite-to-satellite tracking: a comparison between analytical linear orbit perturbation theory and numerical integration, J Geod, 79, 160–166.
Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field determination from satellite orbit coordinates, J Geod, 77, 207–216.
Visser PNAM, van den Ijssel J, Koop R, Klees R (2001) Exploring gravity field determination from orbit perturbations of the European Gravity Mission GOCE, J Geod, 75, 89–98.
Wagner CA (1983) Direct determination of gravitational harmonics from low-low GRAVSAT data. J Geophys Res, 88(B12), 10309–10321.
Wolff M (1969) Direct measurements of the Earth’s gravitational potential using a satellite pair. J Geophys Res, 74, 5295–5300.
Wu BH, Fu CL, Liou YA, Chen WJ, Pan HP (2005) Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3. In: Proceedings of the international symposium on remote sensing (ISRS), Korea, 87–90.
Xu PL, Fukuda Y, Liu Y (2006) Multiple parameter regularization: numerical solutions and applications to the determination of geopotential from precise satellite orbits. J Geod, 80, 17–27.
Zheng W, Shao C, Luo J, Xu H (2008) Improving the accuracy of GRACE Earth’s gravitational field using the combination of different inclinations, Prog Nat Sci, 18, 555-561.
Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data, J Geod, 78, 103-108.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文