跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/30 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡嘉毅
研究生(外文):Chia-Yi, Chien
論文名稱:植基于直觀模糊集之改良式熵值法於模式識別研析
論文名稱(外文):An Improved Cross-Entropy Approach for Pattern Recognition Based on Intuitionistic Fuzzy Set
指導教授:洪國禎洪國禎引用關係
指導教授(外文):Kuo-Chen Hung
學位類別:碩士
校院名稱:國防大學管理學院
系所名稱:運籌管理學系
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:59
中文關鍵詞:直觀模糊集熵值法猶豫度模式辨識醫療診斷細菌檢測
外文關鍵詞:intuitionistic fuzzy setscross-entropyhesitationpattern recognitionmedical diagnosisbacteria detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:469
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
雖然許多衡量直觀模糊集間距離、相似度、非相似度於關聯度的方法已相繼被提出,卻鮮見有基於信息觀點比較兩模糊集的研究。本研究植基于直觀模糊集,由信息理論的角度探討兩模糊集的差異性。另外,我們除引入信息概念外,並修正Vlachos & Sergiadis (2007)所提出非統計性熵值法(cross-entropy),加入猶豫度(hesitation)的信息後並導出相關數理推演,修正為考量所有信息的改良式熵值法(improved cross-entropy);最後並提出等實例驗證其可行性與效果。
The thesis addresses the issue of information-theoretic discrimination measures for intuitionistic fuzzy sets (IFSs). Although many measures of distance, similarity, dissimilarity, and correlation between IFSs have been proposed, there is no reference regarding information-driven measures used for comparison between sets. In this work, we introduce the concepts of discrimination information and cross-entropy in the intuitionistic fuzzy sets and improve non-probabilistic entropy proposed by Vlachos & Sergiadis (2007) for IFSs. Based on this entropy measure, we add information of hesitation and reveal an intuitive and mathematical connection between the notions of entropy for IFSs in terms of fuzziness and intuitionism. Finally, we demonstrate the applications of the proposed discrimination information measure for pattern recognition, medical diagnosis, and bacteria detection.
Content
Abstract
ContentList of Figures
List of Tables
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation 1
1.3 Workflow 2
CHAPTER 2 RELATED WORK 4
2.1 Applications on Intuitionistic Fuzzy Sets 4
2.1.1 Pattern Recognition 5
2.1.2 Medical Diagnose 8
2.2 Entropy Measure 10
2.2.1 Fuzzy Entropy 10
2.2.2 Iuntuitionistic Fuzzy Entropy 13
2.2.3 Vague Entropy 13
2.3 Elements of Intuitionistic Fuzzy Sets 15
2.4 Intuitionistic Fuzzy Entropy Measure 18
CHAPTER 3 METHODOLOGY 28
3.1 Discrimination Measure by Cross-Entropy 28
3.2 Improved Cross-Entropy Measure 34
3.3 Enhanced Procedure on Ranking 36
3.3.1 Case Study 36
3.3.2 Enhanced Process on Ranking Discrimination 38
CHAPTER 4 ILLUSTRATED EXAMPLES 42
4.1 Medical Diagnosis 42
4.2 Bacteria Clustering 45
CHAPTER 5 CONCLUSION & FUTURE RESEARCH 51
5.1 Conclusion 51
5.2 Future Research 51
References 53
Abbas, S.E., (2005),“On intuitionistic fuzzy compactness,”Information Sciences, 173, 75–91.
Atanassov, K., (1983), “Intuitionistic fuzzy sets, in: V. Sgurev (Ed.), VII ITKR’s Session,” Sofia, (Central Science and Technology Library, Bulg. Academy of Sciences, 1984).
Atanassov, K., (1986), “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 20, 87–96.
Atanassov, K., Georgiev, C., (1993),“Intuitionistic fuzzy prolog,” Fuzzy Sets and Systems, 53(2), 121–128.
Atanassov, K., Pasi, G., Yager, R.R., (2005),“Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making,” International Journal of Systems Science, 36, 859–868.
Atanassov, K.T., (1989), “More on intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 33, 37–46.
Atanassov, K.T., (1994a), “New operations defined over the intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 61, 137–142.
Atanassov, K.T., (1994b),“Operators over interval-valued intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 64, 159–174.
Atanassov, K.T., (1999),“Intuitionistic Fuzzy Sets: Theory and Applications,” Studies in Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg.
Balopoulos, V., Hatzimichailidis, A. G., Papadopoulos, B. K., (2007),“Distance and similarity measures for fuzzy operators,” Information Sciences, 177(11), 2336–2348.
Bhandari, D., Pal, N.R., (1993),“Some new information measures for fuzzy sets,” Information Sciences, 67, 209–228.
Biswas, R., (1997),“Intuitionistic fuzzy relations,” Bullitin of Sous. Ens. Flous and Application (BUSEFAL), 70, 22–29.
Burillo, P., Bustince, H., (1996),“Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets,” Fuzzy Sets and Systems, 78, 305–316.
Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M., (2006),“Definition and construction of fuzzy DI-subsethood measures,” Information Sciences, 176(21), 3190–3231.
Bustince, H., (2000), “Indicator of inclusion grade for interval-valued fuzzy sets, Applications to approximate reasoning based on interval-valued fuzzy sets,” International Journal of Approximate Reasoning, 23, 137–209.
Bustince, H., Burillo, P., (1996), “Vague sets are intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 79 (3), 403–405.
C,oker, D., Demirci, M., (1995), “On intuitionistic fuzzy points,” Notes on IFS, 1(2), 79–84.
Chen, S.M., (1995), “Measures of similarity between vague sets,” Fuzzy Sets and Systems, 74(2), 217–223.
Chen, S.M., Tan, J.M., (1994), “Handling multicriteria fuzzy decision-making problems based on vague set theory,” Fuzzy Sets and Systems, 67, 163–172.
De Luca, A., Termini, S., (1972),“A definition of non-probabilistic entropy in the setting of fuzzy sets theory,” Information and Control, 20, 301–312.
De, S.K., Biswas, R., Roy, A.R., (2001),“An application of intuitionistic fuzzy sets in medical diagnosis,” Fuzzy Sets and Systems, 117, 209–213.
De, S.K., Biswas, R., Roy, A.R., (2000),“Some operations on intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 114(3), 477–484.
Dengfeng, L., Chuntian, C., (2002),“New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions,” Pattern Recognition Letters, 23, 221–22.
Deschrijver, G., Kerre, E.E., (2004),“On the representation of intuitionistic fuzzy t-norms and t-conorms,” IEEE Transactions on Fuzzy Systems, 12, 45–61.
Diamond, P., Kloeden, P.E., (1994), Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore.
Dubois, D, Gottwald S., Ha-jek P., Kacprzyk J., Prade H., (2005), “Terminological difficulties in fuzzy set theory–the case of intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 156, 485–91.
Facklam, H., Facklam, M., (1995), Bacteria. Kent: Twenty-First Century, New York.
Garrett, L., (1994), The coming plague: newly emerging diseases in a world out of balance, New York, Penguin Group.
Gau, W.L., Buehrer, D.J., (1993),“Vague sets,” IEEE Transaction on Systems, Man, and Cybernetics, 23(2), 610–614.
Grzegorzewski, P., (2004), “Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric,” Fuzzy Sets and Systems, 148, 319–326.
Gurkan, E., Erkmen, I., Erkmen, A.M., (2002),“Two-way fuzzy adaptive identification and control of a flexible-joint robot arm,” Information Sciences, 145, 13–43.
Hong, D.H., (1999), “A note on similarity measures between vague sets and between elements,” Information Sciences, 115(1), 83–96.
Hong, D.H., Choi, C.H., (2000), “Multicriteria fuzzy decision-making problems based on vague set theory,” Fuzzy Sets and Systems, 114, 103–113.
Hung, W.L., Yang, M.S., (2004), “Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance,” Pattern Recognition Letters, 25 1603–1611.
Hung, W.L., Yang, M.S., (2007),“Similarity measures of intuitionistic fuzzy sets based on Lq metric,”International Journal of Approximate Reasoning, 46, 120–136.
Hung, W. L., Yang, M. S., (2008),“On the J-divergence of intuitionistic fuzzy sets with its application to pattern recognition,” Information Sciences, 178(6), 1641–1650.
Jun, Y.B., Ozturk, M.A., Park, C.H., (2007),“Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings,” Information Sciences, 177, 4662–4677.
Kacprzyk, J., (1997), Multistage Fuzzy Control, Wiley, New York.
Kaufmann, A., (1975), Introduction to the Theory of Fuzzy Sets–Vol. 1: Fundamental Theoretical Elements, Academic Press, New York.
Khatibi, V., Montazer, G.A., (2009), “Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition,” Artificial Intelligence in Medicine, In Press, Corrected
Kosko, B. (1997), Fuzzy Engineering, Prentice-Hall, Englewood Clifis, NJ,.
Kosko, B., (1986),“Fuzzy entropy and conditioning,” Information Sciences, 40(2), 165–174.
Kosko, B., (1993),“Addition as fuzzy mutual entropy,” Information Sciences, 73(3), 273–284.
Kullback, S., (1968), Information Theory and Statistics, Dover Publications, New York.
Kullback, S., Leibler, R.A., (1951),“On information and sufficiency,” Annals of Mathematics and Statistic, 22, 79–86.
Li, D.F., Cheng, C.T., (2002),“New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions,” Pattern Recognition Letters, 23, 221–225.
Li, F., Loo, S.G., (2003),“The entropy of vague sets based on fuzzy sets,” Journal of Huazhong University of Science and Technology (Nature Science), 31 1–3.
Liang, Z.Z., Shi, P.F., (2003),“Similarity measures on intuitionistic fuzzy sets,” Pattern Recognition Letters, 24, 2687–2693.
Lin, J., (1991), “Divergence measures based on the Shannon entropy,” IEEE Transaction Information Theory, 37, 145–151.
Loo, S.G., (1997), “Measures of fuzziness,” Cybernetica, 20, 201–210.
Lupianez, F.G., (2006),“Nets and filters in intuitionistic fuzzy topological spaces,” Information Sciences, 176, 2396–2404.
Ma, Z.F., Li, F., (2001),“Interval-valued vague decision system and the method of rule extracting,” Acta Electronica Sinica, 29(5), 585–589.
Meyer-Base, A., (2004),“Neuro-fuzzy classification,” Pattern Recognition in Medical Imaging, 12, 282–317.
Mitchell, H.B., (2003),“On the Dengfeng–Chuntian similarity measure and its application to pattern recognition,” Pattern Recognition Letters, 24, 3101–3104.
Mitchell, H.B., (2005), “Pattern recognition using type-II fuzzy sets,” Information Sciences, 170, 409–418.
Pal, N.R. & Pal, S.K., (1989),“Object-background segmentation using new definitions of entropy,” Proceeding of IEEE, 136(4), 284–295.
Pal, N.R. & Pal, S.K., (1992), “Higher order fuzzy entropy and hybrid entropy of a set,” Information Sciences, 61, 211–231.
Parkash, O., Sharma, P.K., Mahajan, R., (2008),“New measures of weighted fuzzy entropy and their applications for the study of maximum weighted fuzzy entropy principle,” Information Sciences, 178(11), 2389–2395.
Ramer,A., Kreinovich, V., (1994),“Maximum entropy approach to fuzzy control,” Information Sciences, 81(3–4), 235–260.
Ricciuti, E.R., (1993), Microorganisms: the unseen world, San Diego, Blackbirch.
Ruan, D., Kerre, E.E., (1993),“Fuzzy implication operators and generalized fuzzy method of cases,” Fuzzy Sets and Systems, 54, 23–37.
Sanchez, E., (1976), “Resolution of composition fuzzy relation equations,” Information Control, 30, 38–48.
Sankaran, N., (2001), Microbes and people: an A–Z of microorganisms in our lives, Phoneix, Oryx.
Shang, X. G., Jiang, W. Sun., (1997), “A note on fuzzy information measures,” Pattern Recognition Letters, 18, 425–432.
Singleton, P., (1999), Bacteria in biology, biotechnology, and medicine. Chichester, Wiley, 505–518.
Sinha, D. & Dougherty, E.R., (1993), “Fuzzification of set inclusion: theory and applications,” Fuzzy Sets and Systems, 55, 15–42.
Suzuki, T., Kodama, T., Furuhashi, T., Tsutsui, H., (2001),“Fuzzy modeling using genetic algorithms with fuzzy entropy as conciseness measure,” Information Sciences, 136(1–4), 53–67.
Szmidt, E., Kacprzyk, J., (2000),“On distances between intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 114, 505–518.
Szmidt, E., Kacprzyk, J., (2001a),“Entropy for intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 118, 467–477.
Szmidt, E., Kacprzyk, J., (2001b), “Intuitionistic fuzzy sets in intelligent data analysis for medical diagnosis,” In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (Eds.), ICCS 2001, vol. LNCS 2074. Springer-Verlag, Berlin Heidelberg, 263–271.
Szmidt, E., Kacprzyk, J., (2001c), “Intuitionistic fuzzy sets in some medical applications,” In: Reusch, B. (Ed.), Fuzzy Days 2001, vol. LNCS 2206. Springer-Verlag, Berlin.
Szmidt, E., Kacprzyk, J., (2004a), “A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning,” In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (Eds.), ICAISC 2004, vol. LNAI 3070. Springer-Verlag, Berlin, Heidelberg, 388–393.
Szmidt, E., Kacprzyk, J., (2004b), “Similarity of intuitionistic fuzzy sets and the Jaccard coefficient,” In: Proc. of the 10th Int. Conf. IPMU, 1405–1412.
Tan, L., Taniar, D., (2007),“Adaptive estimated maximum-entropy distribution model,” Information Sciences, 177(15), 3110–3128.
Vlachos, I.K., Sergiadis, G. D., (2007),“Intuitionistic fuzzy information– applications to pattern recognition,”Pattern Recognition Letters, 28, 197–206.
Wang, W.Q., Xin, X.L. (2005),“Distance measure between intuitionistic fuzzy sets,” Pattern Recognition Letters, 26, 2063–2069.
Wang, Y., Lei, Y.J., (2007),“A technique for constructing intuitionistic fuzzy entropy,” Control and Decision, 22, 1390–1394.
Wolff, J.G., (2006),“Medical diagnosis as pattern recognition in a framework of information compression by multiple alignment, unification and search,”Decision Support Systems, 42, 608–25.
Wu, D., Mendel, J.M., (2008), “A vector similarity measure for linguistic approximation: interval type-2 and type-1 fuzzy sets,” Information Sciences, 178(2), 381–402.
Wu, Dongrui, Mendel, Jerry M., (2007), “Uncertainty measures for interval type-2 fuzzy sets,” Information Sciences, 177(23), 5378–5393.
Xu, Z.S., (2006),“On correlation measures of intuitionistic fuzzy sets,” Lecture Notes in Computer Science, 4224, 16–24.
Xu, Z.S., (2007), “Models for multiple attribute decision making with intuitionistic fuzzy information, International Journal of Uncertainty,” Fuzziness and Knowledge-Based Systems, 15, 285–297.
Yager, R.R., (1979),“On the measure of fuzziness and negation. Part 1: Membership in the unit interval,”International Journal of General System, 5, 221–229.
Young, V.R., (1996),“Fuzzy subsethood,” Fuzzy Sets and Systems, 77, 371–384.
Zadeh, L.A., (1965a), Fuzzy sets and Information Control, 8, 338–353.
Zadeh, L.A., (1965b), Fuzzy sets and systems, in: Proceeding of the Symposium on Systems Theory, Polytechnic Institute of Brooklyn, New York, 29–37.
Zadeh, L.A., (1968), “Probability measures of fuzzy events,” Journal of Mathematical Analysis and Applications, 23, 421–427.
Zadeh, L.A., (2005), “Toward a generalized theory of uncertainty (GTU)–an outline,” Information Sciences, 172(1–2), 1–40.
Zadeh, L.A., (2008), “Is there a need for fuzzy logic? ,” Information Sciences, 178(13), 2751–2779.
Zeng, W.Y., Guo, P., (2008), “Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship,” Information Sciences, 178(5), 1334–1342.
Zhang, C.Y. et al, (2004), “Note on Fuzzy entropy of vague sets and its construction method,”Computer Applications and Software, 21, 27–28.
Zhang, C.Y., Fu, H.Y., (2006), “Similarity measures on three kinds of fuzzy sets,” Pattern Recognition Letters, 27, 1307–1317.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top