跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李安勝
研究生(外文):An-Sheng Li
論文名稱:1.生物暗醱酵產氫2.高溫燃氣淨化
論文名稱(外文):1.Biohydrogen Dark Fermentation2.High Temperature Flue Gas Cleaning
指導教授:吳石乙
指導教授(外文):Shu-Yii Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:142
中文關鍵詞:生物醱酵產氫高溫燃氣
外文關鍵詞:Biohydrogen fermentationHigh temperature flue gas
相關次數:
  • 被引用被引用:2
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為生物暗醱酵產氫及高溫燃氣淨化技術等兩個部分探討。生物暗醱酵產氫程序,以細胞固定化技術,將產氫污泥製作成顆粒置入CSTR反應器進行連續產氫醱酵,以蔗糖為基質來源與不同水力停留時間(6、4、2、1、0.5h)、不同基質濃度為(10000、20000、30000、40000mg COD/L)下操作。實驗發現蔗糖產氫操作之液相產物上以丁酸和乙酸為主;結果顯示當蔗糖基質濃度在40000 mg COD/L,系統穩定操作在HRT=0.5h時,可獲的本實驗最佳產氫速率(υH2)及氫氣產率(YH2/Sucrose)分別可達15.09 H2 L/h/L及3.86 mol H2/mol Sucrose,且系統之氫氣濃度都維持在36%以上。
顆粒床過濾器(granular bed filter)主要由顆粒床過濾器、上升式快速流化床及氣固分離裝置所組成,將帶有粉塵氣體利用床質流動過濾以達到除塵與燃氣淨化之目的。由系統的壓力擾動研究中,發現氣固分離器內不同葉板角度,床質流量並不會影響其壓力降;在顆粒床過濾器中,相同葉板角度下,床質流量越快壓力降越小,而上升式快速流化床,亦有相同之現象。另外在除塵效率方面,檔板角度越小、床質流率越高,當進口粉塵濃度升高時,除塵效率將隨之降低。
In this thesis, there are two parts: one is the Biohydrogen dark fermentation with immobilized clostridium SP, the other is High temperature flue gas cleaning.
Hydrogen dark fermentation was carried out by the immobilized technique with anaerobic sludge, sucrose substrates and different hydraulic retention times (HRT), which are 6, 4, 2, 1 and 0.5 hours, and various concentrations such as 10000, 20000, 30000 and 40000 mg COD/L. All the operations were proceed in a process of CSTR, and the butyric acid and acetic acid were the main products in the soluble metabolites. The results show that the maximum hydrogen production rate was 15.09 H2 L/h/L and the hydrogen yield was 3.86 mol H2/mol sucrose individually, by the way the hydrogen concentrations was at least higher than 36% for all test runs.
For high temperature flue gas cleaning system, which includes three parts: say moving granular bed filter, riser and cyclone. The moving granular bed filter was used to clean flue gases to meet the high temperature gas turbine requirements. The effects of operating parameters including the pressure fluctuation, the louver angles, and solids mass flow rates, and the average particle sizes were investigated in this study. From the pressure fluctuation analysis, the results show that the louver angles and the solid mass flow rate make no difference in the pressure drop of the cyclone. Both parts of the granular bed filter under the same louver angle and the riser, have the same results that the higher solid mass flow rate, having lower pressure drop. For the cleaning efficiency, the smaller louver angle have higher solid mass flow rate but lower cleaning efficiency; increasing the feedstock of dust concentration also decreased the cleaning efficiency.
目錄
摘要…………………………………………………………………………Ⅰ
Abstract……………………………………………………………………Ⅱ
目錄…………………………………………………………………………Ⅳ
圖目錄………………………………………………………………………ⅩⅠ
表目錄………………………………………………………………………ⅩⅣ
符號說明……………………………………………………………………ⅩⅤ

總 論…………………………………………………………………1
PartⅠ.生物暗醱酵產氫
第一章 緒論…………………………………………………………………5
1-1.前言 ……………………………………………………………………5
1-2.文獻回顧 ………………………………………………………………6
1-2-1.生質能之歷史背景 …………………………………………………6
1-2-2.生物產氫 ……………………………………………………………7
1-2-3.逢甲大學化工系生質產氫歷程 ……………………………………8
1-3.研究目的………………………………………………………………12
1-4.論文大綱………………………………………………………………13
第二章 實驗原理 …………………………………………………………14
2-1.厭氧處理法……………………………………………………………14
2-1-1.前言…………………………………………………………………14
2-1-2.厭氧產氫醱酵代謝途徑……………………………………………16
2-2.產氫菌種Clostridium之特性 ………………………………………18
2-3.固定化細胞……………………………………………………………20
2-3-1.固定化細胞的定義…………………………………………………20
2-3-2.固定化細胞的特性…………………………………………………20
2-3-2-1.固定化細胞的方法………………………………………………20
2-3-2-2.固定化細胞的穩定度和強度……………………………………21
2-3-3.Silicone 的性質 …………………………………………………22
2-4.三相生物反應器(CSTR)………………………………………………23
第三章 實驗器材與方法 …………………………………………………24
3-1.生物暗醱酵產氫………………………………………………………24
3-1-1.藥品…………………………………………………………………24
3-1-2.實驗儀器……………………………………………………………25
3-2.實驗擔體來源…………………………………………………………26
3-2-1.菌種污泥……………………………………………………………26
3-2-2.固定化細胞顆粒……………………………………………………26
3-3.三相生物反應器(CSTR)連續產氫實驗………………………………26
3-3-1.實驗裝置及操作溫度………………………………………………26
3-3-2.營養基質成份………………………………………………………27
3-3-3.不同進料基質濃度…………………………………………………27
3-3-4.實驗方法……………………………………………………………28
3-3-5.實驗流程……………………………………………………………28
3-4.實驗分析項目…………………………………………………………28
3-4-1.氣相層析儀…………………………………………………………28
3-4-2.液相層析儀…………………………………………………………28
3-4-3.總糖定量……………………………………………………………29
3-4-4.掃瞄式電子顯微鏡…………………………………………………29
3-4-5.菌量分析……………………………………………………………30
第四章 結果與討論 ………………………………………………………33
4-1.不同基質濃度對產氫之影響…………………………………………33
4-1-1.蔗糖濃度為10000 mgCOD/L ………………………………………33
4-1-2.蔗糖濃度為20000 mgCOD/L ………………………………………37
4-1-3.蔗糖濃度為30000 mgCOD/L ………………………………………39
4-1-4.蔗糖濃度為40000 mgCOD/L ………………………………………41
4-1-5.蔗糖濃度之產氫效能………………………………………………43
4-2.水力滯留時間(HRT)對產氫之影響 …………………………………47
4-3.熱篩處理對產氫之影響………………………………………………48
4-4.CSTR生物反應器操作過程液相代謝物之影響………………………49
4-4-1.液相代謝物之產氫效能……………………………………………49
4-4-2.探討氫氣濃度過低原因……………………………………………50
4-5.固定化細胞(SC)顆粒產氫之影響……………………………………51
4-5-1.固定化細胞顆粒(SC)………………………………………………51
4-5-2.掃瞄式電子顯微鏡(VVSEM)菌相之觀察 ………………………52
4-5-2-1.固定化細胞顆粒(SC)(空白組)…………………………………52
4-5-2-2.以蔗糖為碳源之固定化顆粒(SC)菌相…………………………52
4-5-2-2-1.懸浮菌顆粒相…………………………………………………54
4-5-2-2-2.固定化細胞顆粒SC菌相………………………………………54
第五章 結論 ………………………………………………………………56
PartⅡ.高溫燃氣淨化
第一章 緒論 ………………………………………………………………60
1-1.前言……………………………………………………………………60
1-2.文獻回顧………………………………………………………………61
1-2-1.生質氣化裂解………………………………………………………61
1-2-2.壓力擾動……………………………………………………………63
1-3.研究目的………………………………………………………………66
1-4.論文大綱………………………………………………………………68
第二章 實驗原理 …………………………………………………………69
2-1.粒子流動………………………………………………………………69
2-1-1.流體流動方式………………………………………………………69
2-1-2.Bernoulli 方程式…………………………………………………70
2-1-3.粒子流動形使式……………………………………………………71
2-2.流體化床基本概念……………………………………………………73
2-2-1.流體化床……………………………………………………………73
2-2-2.流體化床優缺點……………………………………………………74
2-3.氣化程序………………………………………………………………75
2-3-1.氣化反應……………………………………………………………75
2-3-2.氣化爐之種類 ………………………………………………………77
2-3-3.高溫燃氣淨化 ………………………………………………………78
2-3-4.上升管循環式顆粒床燃氣淨化……………………………………79
第三章 實驗器材與方法 …………………………………………………81
3-1.高溫燃氣除塵淨化……………………………………………………81
3-1-1.實驗儀器……………………………………………………………81
3-1-2.實驗參數……………………………………………………………82
3-1-3.設計實驗田口表……………………………………………………83
3-1-4.實驗前準備…………………………………………………………83
3-1-4-1.篩析法製備高純度石英砂床質…………………………………83
3-1-4-2.高純度石英砂密度之測定………………………………………84
3-1-4-3.煤灰粉塵密度之測定……………………………………………84
3-2.上升管循環式顆粒床實驗……………………………………………85
3-2-1.實驗裝置……………………………………………………………85
3-2-2.實驗方法……………………………………………………………85
3-2-3.實驗流程……………………………………………………………87
第四章 結果與討論 ………………………………………………………90
4-1.上升管循環式顆粒床之壓力擾動……………………………………90
4-1-1.顆粒床過濾器對壓降之影響………………………………………93
4-1-2.氣固分離器對壓降之影響…………………………………………94
4-1-3.上升式快速流化床對壓降之影響…………………………………95
4-2.顆粒床之壓降…………………………………………………………95
4-2-1.葉板角度對壓降之影響……………………………………………96
4-2-2.床質流率對壓降之影響……………………………………………97
4-3.除塵效率之研究 ………………………………………………………98
4-3-1.參數規劃……………………………………………………………98
4-3-2.參數對除塵效率之影響……………………………………………98
4-3-2-1.葉板角度對除塵效率之影響……………………………………99
4-3-2-2.床質流率對除塵效率之影響……………………………………100
4-3-2-3.床質粒徑對除塵效率之影響……………………………………101
4-4.探討實驗因子…………………………………………………………102
4-4-1.流量計氣速校正……………………………………………………102
4-4-2.矽砂之性質…………………………………………………………104
4-4-3.床質流動速率定量…………………………………………………104
4-4-4.粒徑與床質流量之關係……………………………………………105
4-4-5.氣栓現象……………………………………………………………107
第五章 結論 ………………………………………………………………108
參考文獻……………………………………………………………………110
附 錄……………………………………………………………………117
Table A 壓力擾動圖形整合………………………………………………117
Table B 田口設計表 ………………………………………………………119
Table C 高溫燃氣GBF除塵實驗數據 ……………………………………120
Table D 燃氣出口收集之粉塵粒徑分佈…………………………………121
Table E 床質平均粒徑……………………………………………………121
Table F 矽砂耐熱測試……………………………………………………122
Table G矽砂之質量速率校正 ……………………………………………123
Alves, S. S. “A Model For Pyrolysis of Wet Wood.” Can. J. Chem. Engineering 1989.

Adams, M. W. W. and Stiefel, E. I. “Biological hydrogen production: not soelementary. ” Science. 282: 1842~1843; 1998.

Aristidou, A. and Penttila, M. “Metabolic engineering applications to renewable resource utilization.” Curr. Opin. Biotechnol. 11: 187~198; 2000.

Aihua, C. and Hsiaotao, T. B. “Pressure fluctuations and transition from bubbling to turbulent fluidization.” Powder Technology 133: 237~246; 2003.

Broadhurst, T. E. and Becker, H. A. “Measurement and Spectral Analysis of Pressure Fluctuations in Slugging beds.” Fluidization Technology, 1(D). L. Keairns, Ed., Hemisphere Publ. Corp., Wasington. : 63~85; 1976.

Bennett, C.O. and Myers, J. E. “Momentumt,heat,and mass transfer.” 3rd Ed., McGraw Hill., New York. 1982.

Baskakov, A. P., Tuponogov,V. G., P., A. P., and Fillippovsky, N. F., “A Study of Pressure Fluctuation in a Bubble Fluidized Bed.” Powder Technol. 45: 113~117; 1986.

Baeyens, J., “Segregation. ” Gas Fluidization,Geldart, D. Ed.. 1989.

Brock, T. D., Madigan, M. T., Martinko, J. M., and Parker, J. “Biology of Microorganisms. ” Pretice-Hall, Inc., USA. 1994.

Bridgwater, A. V. “The Technology and Ecnonmic Feasibility of Biomass Gasification for Power Generation.” Fuel. 74(5): 631~653; 1995.

Caram, H. S. and Hsu., K. K. “Bubble Formation and Gas Leakage in Fluidized Beds.” Chem. Eng. Sci. 41(6): 1445~1453; 1986.

Clark, N. N., E. A., McKenzie, J., and Gautam, M. “Differential Pressure Measurements in a Slugging Fluidized Bed.” Powder Technol. 67: 187~199; 1991.

Churin, E. “Upgrading of Pyrolysis Oils by Hydrotreatment.” Biomass Pyrolysis Liquids Upgrading and Utilization, 103~108; 1991.

Conesa, J. A., Font, R., and Marcilla, A. “Energy & Fuels.” 10: 134~140; 1996.

Cen, K., Chungen, Y. and Luo, Z. “Hydrodynamics Research of Circulating Fluidized Bed by Chaotic Time Series Analysis of Pressure Fluctuation.” Proc. 5th Intern, Conf., CFB. 5: 1~6; 1996.

Chang, F. Y. and Lin, C.Y. “Biohydrogen production using an up-&ow anaerobic sludge blanket reactor.” International Journal of Hydrogen Energy 2004.

Drahos, J., Cermak, J. and Schugerl, K. “Characterization of Axial Nonumiformity in Fluidized Bed by the Amplitude of Local Pressure Drop Fluctuations.” Chem. Eng. Commun. 65: 49~60; 1988.

Desbene, P. L., Essaygh, M., Desmaziers, B. and Basselier, J. J. “Contributionto the Analytical Study of Biomass Pyrolysis Oils.” Biomass Pyrolysis Liquids Upgrading and Utilization. 155~176 ; 1991.

Endo, G., Noike, T. and Matsumoto, J. “Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic disgestion.” Proc. Soc. Civ. Engrs., Japanese. 325: 61~68; 1982.

Fan, L. T., T. Ho, C. and Walawender, W. P. “Pressure Fluctuations in a Fluidized Bed.” AIChE J. 27(3): 388~396; 1981.

Fan, L. T., Neogi, D., Yashima, M. and Nassar, R. “Stochastic Analysis of a Three-Phase Fluidized Bed : Fractal Approach.” AIChE J. 36(10): 1529~1535; 1990.

Font, R., Marcilla, A., Verdu, E. and Devesa, J. “Catalytic Pyrolysis of Almond Shells: Infuence of temperature and CoCl2 to Almond Shell Radio.” The Canadia Journal of Chemical Engineering. 68: 312~318; 1990.

Fayed, M. E. and Otten, L. “Handbook of Powder Science & Tenology” International Thomson Publishing, Chapter 8. 1997.

Fang, H., H., P. and Liu, H. “Effect of PH on hydrogen production form glucose by a mixed culture.” Bioresource Technology 82: 87~93 ; 2002.

Gottschalk, G. “Bacterial Metabolism” Spring-Verlag., NewYork. 208~282; 1986.

Groves, S. and Lehrle, R. Eup., Polym. J. 28(4); 1992.
Gallucci, K., Jand., N., Foscolo., P. U., Santini., M. “Cold model characterisation of a fluidised bed catalytic reactor by means of instantaneous pressure measurements.” Chemical Engineering Science. 87: 61~71 ;2002.

Hiby, J. W. “Periodic Phenomena Connected with Gas-Solids Fluidization.” Proc. Int. Symp., Fluidization. 99~111; 1967.

Havens, J. A., Welker, J. R., Sliepcevich, C. M. “Pyrlosis of Wood : A Theronanalytical Study.” Pyrolysis and Polyomer. 43~51; 1971.

Hongshen, J., Hiroaki, O., Koji, K., Atsushi, T., Kunio, Y. “Nonlinear dynamics of gas-solid circulating fuidized-bed system.” Chemical Engineering Science. 55: 403~410; 2000.

Hussy, I., Hawkes, F. R., Dinsdale, R., Hawkes, D. L. “Continuous Fermentative Hydrogen Production from a Wheat Starch Co-Product by Mixed Microflora.” Wiley InterScience published online. 2003.

Kang, W. K., Sutherland, J. P. and Osberg. G. L. “Pressure Fluctuations in a Fluidized Bed with and without Screen Cylindrical Packings.” I & EC Fundam. 6(4): 499~504; 1967.

Kollmann, F. F. P. “Exothermic Reactions of Wood at Elevated Temperature.” Journal of Elastomers and Plastics. 7: 43~51; 1971.

Kage, H., H. Yamaguchi, H. Ishii and Y. Matsuno. “Bubble Behavior in Bubbling Fluidized Beds of Binary Particles.” J. Chem. Eng., Japan 24(4): 525~531; 1991.

Kunii, D. and Levenspiel, O. “Fluidization Engineering” Butter worth Heinemann Publishing, Inc, 2nd Ed.. 1991.

Kataoka, N., Miya, A. and Kiriyama, K. “Studies on hydrogen production by contuous culture system of hydrogen-producing anaerobic bacteria.” water Science Technology. 36: 41~47; 1997.

Lirag, R., Jr, C. and Littman, H. “Statistical Study of the Pressure Fluctuations in a Fluidized Bed.” AIChE Symp. Ser. 67(116): 11~22; 1971.

Lee, G. S. and Kim. S. D. “Pressure Fluctuation in Turbulent Fluidized Bed.” J. Chem. Eng., Japan. 21(5): 515~521; 1988.

Lin, C. Y. and Chang R.C. “Hydrogen production during the anaerobic acidogenic conversion of glucose.” Chemical Technology Biotechnology. 74: 498~500; 1999.

Lee, Y. J., Miyahara, T. and Noike, T. “Effect of PH on the microbial hydrogen fermention.” Asia Waterqual 99,7th IAWQ Asia-pacific Regional Conference. 1: 215~220; 1999.

Lay, J. J. “Modeling and optimization of anaerobic digested sludge converting starch to hydrogen.” Biotechnol Bioeng. 68(3): 269~278; 2000.

Liang, T. M., Cheng, S. S., Wu. K. L. “Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane.” Journal of Hydrogen Energy. 27: 1157~1165; 2002.

Lee, K. S., Lo, Y. S., Lo, Y. C., Lin, P. J. and Chang, J. S., “H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.” Biotechnology Letters. 25: 133~138; 2003.

Lin, C. Y. and C. H. Jo. “Hydrogen production from sucrose using an anaerobic sequencing batch reactor process.” Chemical Technology Biotechnology 78: 678~684; 2003.

Morse, R. D. and Ballou, C. O. “The Uniformity of Fluidization – Its Measurement and Use.” Chem. Eng., Progr. 47(4): 199~204; 1951.

Mcintyr, A. D. and Papic, M. M. “Pyrolysis of Municipal Solid Waste.” The Canadian Journal of Chemical Engineering. 52: 263~272; 1974.

McCabe, W. L., Smith, J. C. and Harriott, P. A. “Unit Operation of Chemical Engineering”, 4th Ed., McGraw-Hill, New York. 1985.

Mezerette, A. A. and Petrich, M. A. AICHE. 39(8): 1370~1377; 1991.

Montaudo, Giorgio, “Polymer Degradation and Stability.” 31: 291~326; 1992.

Majizat, A., Mitsunori, Y., Mitsunori, W., Michimasa, N. and Junichiro, M. “Hydrogen gas production form glucose and its microbial kinrtics in anaerobic system.” water Science Technology. 36:279~286; 1997.

Mizuno, O., Ohara., T., Shinya., M. and Noike T., “Characteistics of hydrogen production form bean curd manufacturing waste by anaerobic microflora.” Asian Waterqual 99,7th IAWQ Asia-pacific Regional Conference. 2: 1205~1210; 1999.

Nelson, B. H., Briens, C. L. and Bergougnou, M. A. “Pressure Fluctuations at Individual Grid Holes of a Gas-Solid Fluidized Bed.” Powder Technol. 77: 95~102; 1993.

Ommen, J. R., Schouten, J. C., Michel, M. L., Cor., M., Bleek, V. D. “Response characteristics of probe–transducer systems for pressure measurements in gas–solid fluidized beds: how to prevent pitfalls in dynamic pressure measurements.” Powder Technol. 106: 199~218 ; 1999.
Onodera, H., Miyahara, T. and Noike, T. “Influence of ammonia concentration on hydrogen transformation of sucrose.” Asian Waterqual 99,7th IAWQ Asia-pacific Regional Conference. 2: 1139~1144; 1999.

Puncochar, M., Drahos, J., Cermak J. and Selucky. K. “Evaluation of Minmum Fluidizing Velocity in Gas Fluidized Bed from Pressure Fluctuations.” Chem. Eng., Commum. 35: 81~87; 1985.

Renjun, Z. “On the Comprehensive Role of Thermodynamic and Kinetic Factors in Pyrolysis Reaction System.” J. de Chime Physique. 83; 1986.

Sadasivan, N., Barreteau, D. and Laguerie, C. “Study on Frequency and Magnitude of Fluctuations of Pressure Drop in a Gas-Solid Fluidized Bed.” Powder Technol. 26: 67~74; 1980.

Suzuki, Y. “On hydrogen as fuel gas.” Int. J. Hydrogen Energy. 7: 227~230; 1982.

Svoboda, K. J., Cermak, M., Hartman, J., Drahos, A. and K. Selucky. “Pressure Fluctuations in Gas-Fluidized Beds at Elevatd Temperatures.” Ind. Eng. Chem. Proc. Des. Dev. 22: 514~520; 1983.

Satija, S. and Fan, L. S. “Characteristics of Slugging Regime and Transition to Turbulent Regime for Fluidized Beds of Large Corarse Particles.” AIChE J. 31(9): 1554~1562; 1985.

Stronach, S.M., Rudd, T., Loster, J.N. Anaerobic Digestion Process in Industrial Wastewater Treatment 1993.

Schaaf, J. V. D., Johnsson., F., Cor., M., Bleek, V. D. “Fourier analysis of nonlinear pressure fuctuations in gas-solids flowin CFB risers-Observing solids structures and gas/particle turbulence.” Chemical Engineering Science. 54: 5541~5546; 1999.
Thomas D., Michael, T., John, M., Jack, P., “Biology of Microorganisms. Seventh edition. ” 77~80; 1994.
Winter, O. “Density and Pressure Fluctuations in Gas Fluidized Beds.” AIChE J. 14(3): 426~434; 1968.

Yerushalmi, J. and Cankurt, N. T. “Further Studies of the Regimes of Fluidization.” Powder Technol. 24: 187~205; 1979.

Zhong, Z., Ooi, J. Y. and Rotter, J. M. “The sensitivity of silo flow and wall stresses to filling method” Engineering Structures. 23:756~767; 2001.

白明德, “厭氧生物產氫機制與程序操作策略之研究” 國立成功大學環境工程研究所碩士論文, 1999.

李國興、謝家琦、劉宏秀、汪玉婷、林祺能、林屏杰、林秋裕、張嘉修, “以顆粒化產氫污泥固定床進行連續式厭氣產氫操作” 第二十六屆廢水處理研討會論文摘要集, 1-86; 2001.

李玉婷, “以CSTR/Biofilm複合反應器進行蔗糖及澱粉之厭氧醱酵產氫” 逢甲大學化學工程系碩士論文, 2003.

李佳盈, “以積聚菌種污泥進行厭氧產氫” 逢甲大學土木水利系碩士論文, 2003.

林明正, “CSTR厭氧產氫反應槽之啟動及操作” 逢甲大學土木水利系碩士論文, 2000.

林褀能, “固定化細胞產氫” 逢甲大學化學工程系碩士論文,2002.

林褀能、吳石乙、張嘉修, “矽膠固定化產氫菌群進行三相流化床醱酵產氫研究” 第九屆海峽兩岸環境保護學術研討會, 2:1883~1886; 2004.

吳美惠、張芳賓、朱昱學, ”固定化微生物廢水處理技術評估” 工業污染防治,59:81∼110; 1996.

吳石乙編, “粉粒體技術”, 1999.

吳耿東、李宏台, “廢棄物氣化技術” 工程月刊, 74(4):85~96; 2001.

吳石乙、白景成, “高溫顆粒床除塵裝置” 10(9):146~158; 2002.

邵信, “產氫處理新方向-產氫技術” 廢水處理技術研討會第二章,工研院, 1997.

楊肇政、鄭阿全, “污染防治” 高立出版社, 1994.

曾姿錦、郭安聰、方信凱、王金雄、張嘉修, “結合CSTR與顆粒污泥床二階段反應程序進行共聚合乳膠固定化細胞之生物產氫” 第二十八屆廢水處理技術研討會, 2003.

陳晉照, “CSTR系統厭氧產氫之研究” 逢甲大學土木水利系博士論文, 2002.
陳國誠, “微生物固定化技術在廢水處理的應用” 工業污染防治, 68:1∼23; 1998.

陳勇、吳創之, “我國21世紀後續能源發展戰略研究—生物質能利用” 中國新能源網, 2003.

張嘉修、李國興、林屏杰、吳石乙、林秋裕, “以環境生物技術生產輕潔能源-氫氣” 化工(impress), 2002.

賴奇厚, “營養鹽對厭氧產氫之影響” 逢甲大學土木水利系碩士論文, 2002.

謝家琦、林祺能、李國興、林屏杰、吳石乙、張嘉修, “以EVA固定化細胞進行填充床系統醱酵產氫” 第二十八屆廢水處理技術研討會, 2003.

錢建嵩、黃正中、楊玉樹、歐建志、張瑞顯、吳耿東、游逸將, “流體化床技術” 高立圖書有限公司, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top